Binary Representations of Regular Graphs

Abstract:

A spherical representation of a graph Γ in a metric space M is an injective map from the vertex set of Γ to a sphere in M; it is assumed that there exist $d_1 < d_2$ such that the distance between the images of any two distinct vertices is equal to d_1 if the vertices are adjacent and it is equal to or d_2 otherwise.

A particular case of $M = H_n$, the binary Hamming space of $(0,1)$ strings of length n, sometimes yields a useful information about the graph Γ. The least n, for which such a representation is possible, is the binary spherical representation number of Γ, or $bsr(\Gamma)$. I will show that if Γ is a connected regular graph, then $bsr(\Gamma) \geq |\Gamma| - m$ where m is the multiplicity of the least eigenvalue of Γ. The case of equality gives a characterization of an important class of strongly regular graphs that has been avoiding a good characterization for 60+ years.

SNACKS IN FACULTY LOUNGE AT 3:30 PM.
EVERYONE WELCOME (EVEN IF YOU ARE UNABLE TO ATTEND THE TALK)