1. **Catalog Description**
 SCI/PHY 5090 Special Topics in Physics for Natural Science Teachers
 Intensive investigation of relevant topics of student/faculty interest. Prerequisite: Enrollment in the MS in Natural Sciences program and consent of the instructor.

2. **Course Objectives**
 To provide students with an in-depth study of topics of special interest (i.e. elementary particles, cosmology, superconductors, semiconductors) to the extent that they are not ordinarily covered in traditional courses.

3. **Sample Course Outline** the outline below is intended as being a representative sample of a typical topics course. Topics will vary depending upon demand and the instructor.

 I. **Introduction**
 i. Difficulties in Classical Physics
 ii. Determinism and causality issues

 II. **Early Quantum Theory**
 i. Bohr Model
 ii. Spectroscopy
 EXAM I

 III. **Relativity**
 i. Einstein and Space-time
 ii. Energy and momentum

 IV. **Dirac and Antiparticles**
 i. Electrons and Positrons
 ii. The muon and pion
 EXAM II

 V. **Higher Energy**
 i. Strange particles and the Lambda
 ii. What is an elementary particle

 VI. **Weak Hypercharge**
 i. Isotopic spin
 ii. Weak interactions and beta decay

 VII. **Baryons and Nucleons**
 i. Nuclear symmetry
 ii. Strong interactions and Gell-Mann
 EXAM III
VIII. Quarks
 i. The eightfold way
 ii. Strangeness and charm
 iii. Top and bottom as quarks

IX. Electroweak Unification
 i. The W particle and mass
 ii. The neutral Z particle

X. Grand Unified Theories
 i. The X boson
 ii. Decay of the proton
 iii. Matter-Antimatter symmetry

XI. Supersymmetric String Theory
 i. Gravity and the graviton
 ii. The Planck scale

EXAM IV

Evaluation: Students are evaluated based upon homework problems, quizzes, exams, a comprehensive final exam and classroom presentations. The precise weighting and nature of the evaluation tools varies slightly from instructor to instructor.

4. Implementation

 b. Faculty members assigned: Qualified Physics faculty for the relevant topic.
 c. Additional resources: No additional costs are incurred for this course.
 d. Textbook: The textbook will be selected based on the topic chosen (i.e. Hughes, Introduction to Elementary Particle Physics, Cambridge, 1998)

5. Rationale

 e. Purpose and Need:
 To provide practicing professional educators with knowledge and experience relating to new and emerging concepts and theories in Physics.

 f. Justification of Course Level and Prerequisites:
 All participants of this course will hold a baccalaureate degree. Many will currently be teaching physics and are seeking additional information and insights about specific topics in physics not treated in other classes.

 g. Similarity to Existing courses:
 No similar courses exist on campus for science teachers in physics.

 h. Requirement or Elective:
 This course is intended to be an elective in the M.S in Natural Sciences program. Special requirements for this course will depend upon the topic and the instructor, and may include a laboratory evaluation component.
6. Date Approved by Physics Department: 10/25/00

7. Date Approved by COSCC: 11/09/00

8. Date Approved by CGS: 2-6-01

9. Contact Persons: Keith Andrew, campus phone 217-581-3220
 James Conwell, campus phone 217-581-6343