Eastern Illinois University
Early Childhood, Elementary, and Middle Level Education Department
ELE3290.004: Science in the Elementary School

Instructor: Denise E. Reid
Location & Time: BB2430 T & R 10-11:40 a.m.
Office: BB2211
Office Hours: M & W 8:30-9:30 a.m.
T & TH 3-4 p.m.
Telephone: Office (217) 581-7891/Cell (217) 549-3633
E-mail address: dereid@eiu.edu
Web Site: http://www.ux1.eiu.edu/~dereid

Unit Theme: Educators as Creators of Effective Educational Environments: Integrating diverse students, subjects, strategies, societies and technologies.

Catalog Description: Science in the Elementary School. Exploration of the nature, processes, and products of science and their relationships to society, the world, and the school curriculum. Field-based experiences will be in conjunction with ELE 4000.

Prerequisites: Concurrent enrollment in ELE 3340 and ELE 4880, or permission of department chair. University Teacher Education requirements apply and department requirements for enrollment must be met.

Purpose of the Course: To involve students in the process of learning about the nature of science; a sample of its content and the methods used to teach the content. Using theories of how children learn as a basis for instruction, the students develop their skills at teaching science processes through discovery, guided discovery, and inquiry lessons. Students will also understand the importance of assessment and evaluation, and will develop various means of assessment. *Students will integrate technology in their lessons, projects, and science units.*

Course Text:

Supplemental Materials
LiveText Account & Course packet.

Learning Model:
The Information-Processing Models

- Information-processing models emphasize ways of enhancing the human being’s innate drive to make sense of the world by acquiring and organizing data, sensing problems and generating solutions to them, and developing concepts and language for conveying them.
- Scientific Inquiry & Inquiry Training: The Scientific Inquiry Model used The Biological Sciences Curriculum (BSCS) model as one example of a curriculum that uses inquiry teaching in developing science curriculum. “The essence of the model is to involve students in a genuine problem of inquiry by confronting them with an area of investigation, helping them identify a conceptual or methodological problem within that area of investigation, and inviting them to design ways of overcoming the problem.” (p. 169) In addition, the Scientific Inquiry Model uses the work of Richard Suchman to support the Inquiry Training Model. Suchman believed that students can be conscious of their process of inquiry and can be taught the scientific procedures directly. “The model promotes strategies of inquiry and the values and attitudes that are essential to an inquiring mind, including: process skills; active, autonomous learning; verbal expressiveness; tolerance of ambiguity; persistence; logical thinking; and an attitude that all knowledge is tentative.” (p. 185)

There are different levels of inquiry, from guided to full inquiry. One teaching and learning model that supports inquiry and provides a framework to help teachers become more effective in using inquiry approaches is the Learning Cycle Model. The original Learning Cycle Model was developed by Professor Robert Karplus and colleagues at the University of California-Berkeley and consisted of three components: exploration, concept introduction, and concept application. The current model has been modified by BSCS and has five components: Engagement, Exploration, Explanation, Expansion, and Evaluation. (Moyer, R. H., Hackett, J. K., & Everett, S. A. (2007). *Teaching Science as investigations: Modeling inquiry through learning cycle lessons*. Upper Saddle River, NJ: Pearson/Merrill Prentice Hall.)

The BSCS 5E Instructional Model http://www.bscs.org/curriculumdevelopment/features/bscs5es.html

Dispositions: Teacher candidates in the Department of EC/ELE/MLE will exhibit professional ethical practices, effective communication, and sensitivity to diversity, the ability to provide varied teaching practices evidenced in a supportive and encouraging environment.

Live Text Assessment Requirement: For those classes with Live Text or Practicum- If the portfolio or Live Text requirements are rated, by the instructor, to have been completed in less than a satisfactory manner then no more than a "D" may be earned in the class regardless of the number of points earned.

Standards:

Course requirements and demonstrated competencies are aligned with the following standards:

- Association for Childhood Education International Standards (ACEI) http://www.acei.org/Synopsis.htm
- Illinois Professional Teaching Standards (IPTS) http://www.isbe.state.il.us/profprep/PDFs/ipts.pdf
- Illinois Core Language Arts Standards (ICLAS) http://www.isbe.net/profprep/CASCDvr/pdfs/24110_corelangarts_std.pdf
- Illinois Core Technology Standards (ICTS) http://www.isbe.net/profprep/CASCDvr/pdfs/24100_coretechnology.pdf

Course Outcomes

1. The students will exhibit a positive attitude toward providing meaningful experiences in science for young students.
2. The students will demonstrate an understanding of the nature of science, the learner, and the learning environment.
3. The students will demonstrate a working knowledge of appropriate science learning and hands-on inquiry experiences for children.
4. The students will exhibit the ability to effectively utilize various types of materials, resources, and media to engage children in meaningful science experiments.
5. The students will demonstrate knowledge of assessment and evaluation procedures for science.
6. The students will demonstrate the ability to plan, implement, and assess science instruction for elementary students.
7. The students will become familiar with the Illinois Learning Standards for Science and the National Science Education Standards.

<table>
<thead>
<tr>
<th>Course Requirements</th>
<th>Demonstrated Competencies</th>
<th>Aligned Standards (ACEI, ELE, IPTS, ICTS, ICLAS)</th>
</tr>
</thead>
</table>
| Participation | Performance includes presence, participation and preparation for group and whole class discussions, and participation in lab activities working cooperatively with peers. Focus is on practices and behaviors that allow the learner to grow professionally. | ACEI 5.1
ELE 16, 17
IPTS10, 11
ICTS 2E, 6C, 6D
ICLAS 2D, 2E, 2H
Dispositions: PEP, EC, SDE |
| Science notebook & lab sheets | Performance includes organizing science notebook in order to create a useful teaching resource. This resource will include handouts, assignments, lab sheets, demonstration lessons and a detailed Table of Contents. Focus is on developing a professional resource that can be used to plan and implement developmentally appropriate lessons using inquiry-based activities. | ACEI 2.2
ELE 4
IPTS 1, 7, 10
ICTS 2B
ICLAS 2B
Dispositions: PEP, EC, PTSL |
| Readings & written responses (Textbook & Journal Articles) | Performance will include reading, reflecting, and preparing for discussion of content related to science teaching and learning (constructivism, inquiry, assessment, questioning, learning cycle model, developmentally appropriate practices, etc.) Focus is on increasing the participant’s knowledge and understanding of the learning theory and processes related to science teaching methods. | ACEI 2.2, 3.1, 3.3
ILSCSTF
IPTS 1
ICTS 2E, 7K
ICLAS 1E, 2B, 2D, 2F
Dispositions: PEP, EC |
| Quizzes & Tests | Tests will be provided as one form of assessment of student’s content knowledge related to planning and teaching effective science lessons. Focus is on demonstrating understanding of course content knowledge. | ACEI 2.2
ELE 4,16
IPTS 1, 8
ICLAS
Dispositions: EC, PTSL |
| Science Unit* | Performance includes creating a two-week science unit that is developmentally appropriate and inquiry based. The lesson plans will follow the learning cycle model. Lessons will allow elementary students to develop conceptual understanding. Appropriate informal and formal assessment activities will be included. Focus is | IPTS 1, 2, 3, 4, 6, 7, 8,
ICTS 2E, 6A, 6C, 7J, 8A, 8D
ACEI 1, 2.2, 3.1, 3.2, 3.3, 3.4, 4,
NAEYC 4b, 4c, 4d
Dispositions: EC, PTSL |

on developing a developmentally appropriate inquiry-based science unit that fosters conceptual understanding.

Demonstration Lesson & Group Presentation
Performance includes working cooperatively with peers to select demonstration lessons around a theme. Each demonstration lesson will foster inquiry. Performance will include demonstration understanding of the concept through effective questioning techniques for creating conceptual understanding and overall explanation of the concept.

Dispositions:
Pep, EC, PTSL, SDE

ACEI 1, 2, 2.2, 3.2, 3.3, ELE 4
IPTS 1, 3, 4, 6, 7
ICTS 7A, 7D, 7J, 8D
ICLAS 1F, 2D, 2F
Dispositions:
Pep, EC, PTSL, IWS

LiveText Submission
All or a portion of the Science Unit will be submitted through LiveText for Unit and Program Assessment.

<table>
<thead>
<tr>
<th>Core Assignments</th>
<th>Brief Description</th>
<th>Points/Due Date</th>
<th>Approximate Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participation</td>
<td>Performance includes presence, participation and preparation for group and whole class discussions, and participation in lab activities working cooperatively with peers. Focus is on practices and behaviors that allow the learner to grow professionally.</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>Science notebook & lab sheets</td>
<td>Performance includes organizing science notebook in order to create a useful teaching resource. This resource will include handouts, assignments, lab sheets, demonstration lessons and a detailed Table of Contents. Focus is on developing a professional resource that can be used to plan and implement developmentally appropriate lessons using inquiry-based activities.</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>Readings & written responses (Textbook & Journal Articles)</td>
<td>Select an article from a professional journal that corresponds with the relevant topic. Topics such as constructivism, inquiry-based learning, the learning cycle, using writing in science, authentic assessment, etc. Copy, read, highlight, and write reflective comments in the margins. Type a 1/2 to 1 page reflection that answers this question: What was the key idea presented in this article?</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>Quizzes & tests</td>
<td>A midterm and a final will be given over the course content.</td>
<td></td>
<td>15%</td>
</tr>
</tbody>
</table>
An inquiry-based science unit will be developed. The unit will include: topic research, teacher resources, student resources, and lesson plans following the learning cycle model.

Performance includes working cooperatively with peers to select demonstration lessons around a theme. Each demonstration lesson will foster inquiry. Performance will include demonstration understanding of the concept through effective questioning techniques for creating conceptual understanding and overall explanation of the concept. The lesson will be presented to peers and may include a presentation for elementary students.

Performance in the alternative assignments promotes life-long learning. The alternative assignments require effective communication related to the experiences. Performance increases awareness of outside agencies, materials, and resources.

All or a portion of the Science Unit will be submitted through LiveText for Unit and Program Assessment.

Alternative Assignments

<table>
<thead>
<tr>
<th>Alternative Assignment</th>
<th>Brief Description</th>
<th>Aligned Standards (ACEI, ELE, IPTS, ICTS, ICLAS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illinois Learning Standards & National Science Education Standards Assignment (NSES)</td>
<td>Performance requires the students to be able to identify the three state science goals (11, 12, & 13) ultimately being able to identify the standards taught in his/her science unit. The students will be comparing the content standards developed by NSES with the content standards in state goal 12, recognizing the content is divided into three categories: life sciences, physical sciences, & earth and space sciences.</td>
<td>ACEI 2.2, 3.1, 3.3 ILSCTF-ELE 4, 10 IPTS 1, 4, 8 IPTS 3A, 6C, 8A ICLAS 3B</td>
</tr>
<tr>
<td>Examine a professional science journal (Science & Children, Science Scope, The Science Teacher, etc.)</td>
<td>Read the letter from the editor. What is his/her focus? Briefly describe the main features of the journal. Select one article to read. Write a brief summary. How could the classroom teacher use the information in this professional journal in his/her teaching? How could the classroom teacher use this information in her professional growth?</td>
<td>ACEI 2.2, 3.1, 3.3 ILSCTF IPTS 1 ICTS 2E, 7K ICLAS 1E, 2B, 2D, 2F</td>
</tr>
</tbody>
</table>
Take Home labs

Performance requires the students to conduct long term laboratory activities that necessitate daily data collection. The activities relate to weather and an experiment involving osmosis and include integration with internet resources and health sciences.

Field Trips

Performance includes interaction with outside agencies to enhance educational experiences for all students. Activities at the nature centers include the integration of handicapped students into the learning environment, investigating environmental education, and methods of incorporating field studies as an integral part of the science curriculum.

Grading Scale: A=100-92%; B=91-83%; C=82-74%; D=73-65%; F=below 65%

Course Assignments and Expectations: All assignments must be turned in by the due date, unless approved by instructor. All assignments must be completed in an exemplary fashion in order to receive an A.

1. Active Participation (30 points) Most lessons involve activities of some type that are difficult to make up if absent, so regular attendance is beneficial. Participation includes the following: being in class on time (3-5 minutes early), looking at those who are speaking, working cooperatively with group members, being prepared for class, and being actively involved in labs and discussions. This also means that your cell phones are turned off. If an emergency arises please notify the instructor if you are unable to attend class by leaving a message on voice mail or e-mail. Five points will be deducted for each unexcused class absence.

2. Content Area Readings Select an article from a professional journal that corresponds with the relevant topic. Topics will be constructivism, inquiry (teaching science), and authentic assessment. Copy, read, highlight, and write reflective comments in the margins. Be prepared to discuss the topic in class. Type a 1/2 to 1 page reflection that answers this question: What was the key idea presented in this article? In other words what did you learn about the topic from reading this article? (30 points - 10 points each) *See grading guidelines listed below.

3. Professional Teaching Journal Critique (20 points)

4. NSES Standards & Illinois Learning Standards (10 points)

5. Process Skills Quiz (31 points)

6. Integrated Learning Project: Plan and teach a lesson to elementary school children. (50 points)

7. Science Demonstration Lesson (28 points) & Group Presentation (30 points) Locate an interesting science demonstration lesson, and write lesson plan following the model presented by instructor. Send a copy of the demonstration lesson plan to class members through WebCT. Work with group members to put together a presentation (science show).

8. Science Notebook (25 points) Organize your science binder to include a section for labs. (Follow the criteria in your packet.)

9. Final (approximately 50 points)

*Grading system for Content Area Readings:

10 points: Essential ideas for understanding the topic are highlighted throughout the whole article—including the sample lesson or any appendices, the comments in the margins show that the reader was thinking about the ideas that were presented and not just repeating the ideas. Reflective paper is well written, and clearly explains the key idea...
learned from reading this article. The written response is one page in length. Written response is typed and includes reference using APA guidelines.

8 points: Important ideas are highlighted throughout entire article, but comments are not truly reflective—comments just restate the ideas presented. Reflective paper highlights key idea presented in the article, and is the appropriate length. Written response is typed and includes reference using APA guidelines.

6 points: Few ideas are highlighted throughout the article, and there are few comments written in the margins. Comments are not reflective. Written response is a summary of the article, and is the appropriate length. Paper is typed and includes therereference, which may or may not follow APA guidelines.

4 points: Few ideas are highlighted in the article and there are no comments written in the margins. Written response is too general. Written response is typed and lists reference.

2 points: Article has no highlighted information or comments written in the margins. Written response may or may not be typed. Written response does not reflect key idea from article.

COURSE OUTLINE

| Week 1 | What is Science?
Conceptions of Scientist & Science Attitudes
(Draw-A-Scientist Test) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 2</td>
<td>Science Process Skills & Activities</td>
</tr>
<tr>
<td>Week 3</td>
<td>Science Process Skills & Activities</td>
</tr>
<tr>
<td>Week 4</td>
<td>Constructivism & Misconceptions</td>
</tr>
<tr>
<td>Week 5</td>
<td>Inquiry Based Learning</td>
</tr>
</tbody>
</table>
| Week 6 | National Science Education Standards & Illinois Learning Standards
Science Content: Life Science, Physical Science, & Earth & Space Science
Using Trade Books in science |
| Week 7 | Scope & Sequence Charts
Science Concepts
Developing Clarity of Learning (The Essential Understanding: Understand, Know, Be Able to Do—skills) |
| Week 8 | Demonstration Lessons (Discrepant Events)
The Importance of Questioning |
| Week 9 | Authentic Assessment |
| Week 10 | The Learning Cycle Model |
| Week 11 | The Learning Cycle Model |
| Week 12 | The Learning Cycle Model |
| Week 13 | Other Science Teaching Strategies
Simulations
Project Based Learning |

ELE 3290 References

Heinemann.

