Instructor: Brian Poelker
Office: BB 2155
Email: bpoelker@eiu.edu
Office Hours: MW 11:40a – 12:50p, 2:40p - 4:00p
Phone: 581-7896
Class Meetings: MW 8:00a – 9:40a, 10:00a – 11:40a, 1:00p- 2:40p

Unit Theme: Educators as Creators of Effective Educational Environments: Integrating diverse students, subjects, strategies, societies and technologies.

Catalog Description: Science in the Elementary School. This course encompasses the exploration of the nature, processes, and products of science and their relationships to society, the world, and the school curriculum. Field-based experiences will be in conjunction with ELE 4000.

Prerequisites: Concurrent enrollment in ELE 3340 and ELE 4880, or permission of department chair. University Teacher Education requirements apply and department requirements for enrollment must be met.

Purpose of the Course: To involve students in the process of learning about the nature of science; a sample of its content and the methods used to teach the content. Using theories of how children learn as a basis for instruction, the students develop their skills at teaching science processes through discovery, guided discovery, and inquiry lessons. Students will also understand the importance of assessment and evaluation, and will develop various means of assessment. Students will integrate technology in their lessons, projects, and science units.

Course Text:

Supplemental Materials
LiveText Account & Course packet.

Learning Model:
The Information-Processing Models
- Information-processing models emphasize ways of enhancing the human being’s innate drive to make sense of the world by acquiring and organizing data, sensing problems and generating solutions to them, and developing concepts and language for conveying them.

Dispositions: Teacher candidates in the Department of EC/ELE/MLE will exhibit professional ethical practices, effective communication, and sensitivity to diversity, the ability to provide varied teaching practices evidenced in a supportive and encouraging environment.

Live Text Assessment Requirement: For those classes with Live Text or Practicum- If the portfolio or Live Text requirements are rated, by the instructor, to have been completed in less than a satisfactory manner then no more than a "D" may be earned in the class regardless of the number of points earned.

Standards:
Course requirements and demonstrated competencies are aligned with the following standards:
- Association for Childhood Education International Standards (ACEI) http://www.acei.org/Synopsis.htm
- Illinois Professional Teaching Standards (IPTS) http://www.isbe.state.il.us/profprep/PDFs/ipts.pdf
- Illinois Core Technology Standards (ICTS) http://www.isbe.net/profprep/CASCDvr/pdfs/24100_coretechnology.pdf

Revised Spring, 2009
Course Outcomes

1. The students will exhibit a positive attitude toward providing meaningful experiences in science for young students.
2. The students will demonstrate an understanding of the nature of science, the learner, and the learning environment.
3. The students will demonstrate a working knowledge of appropriate science learning and hands-on inquiry experiences for children.
4. The students will exhibit the ability to effectively utilize various types of materials, resources, and media to engage children in meaningful science experiments.
5. The students will demonstrate knowledge of assessment and evaluation procedures for science.
6. The students will demonstrate the ability to plan, implement, and assess science instruction for elementary students.
7. The students will become familiar with the Illinois Learning Standards for Science and the National Science Education Standards.

<table>
<thead>
<tr>
<th>Course Requirements</th>
<th>Demonstrated Competencies</th>
<th>Aligned Standards (ACEI, ELE, IPTS, ICTS, ICLAS)</th>
</tr>
</thead>
</table>
| Participation | Performance includes presence, participation and preparation for group and whole class discussions, and participation in lab activities working cooperatively with peers. Focus is on practices and behaviors that allow the learner to grow professionally. | ACEI 5.1
ELE 16, 17
IPTS 10, 11
ICTS 2E, 6C, 6D
ICLAS 2D, 2E, 2H
Dispositions: PEP, EC, SDE |
| Science notebook & lab sheets | Performance includes organizing science notebook in order to create a useful teaching resource. This resource will include handouts, assignments, lab sheets, demonstration lessons and a detailed Table of Contents. Focus is on developing a professional resource that can be used to plan and implement developmentally appropriate lessons using inquiry-based activities. | ACEI 2.2
ELE 4
IPTS 1, 7, 10
ICTS 2B
ICLAS 2B
Dispositions: PEP, EC, PTS |
| Readings & written responses (Textbook & Journal Articles) | Performance will include reading, reflecting, and preparing for discussion of content related to science teaching and learning (constructivism, inquiry, assessment, questioning, learning cycle model, developmentally appropriate practices, etc.) Focus is on increasing the participant's knowledge and understanding of the learning theory and processes related to science teaching methods. | ACEI 2.2, 3.1, 3.3
ILSCSTF
IPTS 1
ICTS 2E, 7K
ICLAS 1E, 2B, 2D, 2F
Dispositions: PEP, EC |
| Quizzes & Tests | Tests will be provided as one form of assessment of student’s content knowledge related to planning and teaching effective science lessons. Focus is on demonstrating understanding of course content knowledge. | ACEI 2.2
ELE 4, 16
IPTS 1, 8
ICLAS
Dispositions: EC, PTS |
| Science Unit* | Performance includes creating a two-week science unit that is developmentally appropriate and inquiry based. The lesson plans will follow the learning cycle model. Lessons will allow elementary students to develop conceptual understanding. Appropriate informal and formal assessment activities will be included. Focus is on developing a developmentally appropriate inquiry-based science unit that fosters conceptual understanding. | IPTS 1, 2, 3, 4, 6, 7, 8,
ICTS 2E, 6A, 6C, 7J, 8A, 8D
ACEI 1, 2.2, 3.1, 3.2, 3.3, 3.4, 4,
NAEYC 4b, 4c, 4d
Dispositions: |
Core Assignments

<table>
<thead>
<tr>
<th>Core Assignments</th>
<th>Brief Description</th>
<th>Points/Due Date</th>
<th>Approximate Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participation</td>
<td>Performance includes presence, participation and preparation for group and whole class discussions, and participation in lab activities working cooperatively with peers. Focus is on practices and behaviors that allow the learner to grow professionally.</td>
<td>5% 50pts</td>
<td>Throughout term</td>
</tr>
<tr>
<td>Science notebook & lab sheets</td>
<td>Performance includes organizing science notebook in order to create a useful teaching resource. This resource will include handouts, assignments, lab sheets, demonstration lessons and a detailed Table of Contents. Focus is on developing a professional resource that can be used to plan and implement developmentally appropriate lessons using inquiry-based activities.</td>
<td>10% 50 pts assignments TBA 50 pts Science Notebook</td>
<td>2 Dec.</td>
</tr>
<tr>
<td>Readings & written responses (Textbook & Journal Articles)</td>
<td>Select an article from a professional journal that corresponds with the relevant topic. Topics such as constructivism, inquiry-based learning, the learning cycle, using writing in science, authentic assessment, etc. Copy, read, highlight, and write reflective comments in the margins. Type a 1/2 to 1 page reflection that answers this question: What was the key idea presented in this article?</td>
<td>10% 100pts</td>
<td>31 Aug. Constructivism 2 Sept. Inquiry 14 Sept. Misconceptions 16 Sept. Authentic Assessment</td>
</tr>
<tr>
<td>Quizzes & tests</td>
<td>A midterm and a final will be given over the course content.</td>
<td>15%</td>
<td>50 pts in class essays TBA 100 pts Final</td>
</tr>
<tr>
<td>Science Unit</td>
<td>An inquiry-based science unit will be developed. The unit will include: topic research, teacher resources, student resources, and lesson plans following the learning cycle model.</td>
<td>30%</td>
<td>300 pts TBA</td>
</tr>
<tr>
<td>Demonstration lesson & group presentation</td>
<td>Performance includes working cooperatively with peers to select demonstration lessons around a theme. Each demonstration lesson will foster inquiry. Performance will include demonstration understanding of the concept.</td>
<td>15%</td>
<td>100 pts Lesson Plan 50 pts Presentations TBA</td>
</tr>
</tbody>
</table>

LiveText Submission All or a portion of the Science Unit will be submitted through LiveText for Unit and Program Assessment.
through effective questioning techniques for creating conceptual understanding and overall explanation of the concept. The lesson will be presented to peers and may include a presentation for elementary students.

Alternative Assignments

Performance in the alternative assignments promotes lifelong learning. The alternative assignments require effective communication related to the experiences. Performance increases awareness of outside agencies, materials, and resources.

LiveText Submission

All or a portion of the Science Unit will be submitted through LiveText for Unit and Program Assessment.

Alternative Assignments

<table>
<thead>
<tr>
<th>Alternative Assignment</th>
<th>Brief Description</th>
<th>Aligned Standards (ACEI, ELE, IPTS, ICTS, ICLAS)</th>
</tr>
</thead>
</table>
| Illinois Learning Standards & National Science Education Standards Assignment (NSES) | Performance requires the students to be able to identify the three state science goals (11, 12, & 13) ultimately being able to identify the standards taught in his/her science unit. The students will be comparing the content standards developed by NSES with the content standards in state goal 12, recognizing the content is divided into three categories: life sciences, physical sciences, & earth and space sciences. | ACEI 2.2, 3.1, 5
ILSCTF-ELE 4, 10
IPTS 1, 4, 8
IPTS 3A, 6C, 8A
ICLAS 3B |
| Examine a professional science journal (Science & Children, Science Scope, The Science Teacher, etc.) | Read the letter from the editor. What is his/her focus? Briefly describe the main features of the journal. Select one article to read. Write a brief summary. How could the classroom teacher use the information in this professional journal in his/her teaching? How could the classroom teacher use this information in her professional growth? | ACEI 2.2, 3.1, 3.3
ILSCTF
IPTS 1
ICTS 2E, 7K
ICLAS 1E, 2B, 2D, 2F |
| Take Home labs | Performance requires the students to conduct long term laboratory activities that necessitate daily data collection. The activities relate to weather and an experiment involving osmosis and include integration with internet resources and health sciences. | ACIE 2.2
ILSCTF-ELE 1, 4, 9, 12, 15
IPTS 1, 4
ICTS 3A, 3D, 6A, 8D |
| Field Trips | Performance includes interaction with outside agencies to enhance educational experiences for all students. Activities at the nature centers include the integration of handicapped students into the learning environment, investigating | ACIE 2.2, 3.2, 3.4
ILSCTF-ELE 1, 4, 9, 12, 15
IPTS 1, 3, 4, 6, 9
ICLAS 2H, 2B, 3B |
environmental education, and methods of incorporating field studies as an integral part of the science curriculum.

Detailed instructions and expectations for each assignment will be provided by each individual instructor in his/her course syllabi.

Grading Scale: A=100-92%; B=91-83%; C=82-74%; D=73-65%; F=below 65%

COURSE OUTLINE

| Week 1 | What is Science?
| Conceptions of Scientist & Science Attitudes Science
| Process Skills & Activities, National Science Education Standards & Illinois Learning Standards
| Science Content: Life Science, Physical Science, & Earth & Space Science |
Week 2	Science Process Skills & Activities using The Learning Cycle Model, Constructivism
Week 3	Science Process Skills & Activities using The Learning Cycle Model, Inquiry Based Learning
Week 4	Science Process Skills & Activities using The Learning Cycle Model, Authentic Assessment
Week 5	Science Process Skills & Activities using The Learning Cycle Model, Misconceptions
Week 6	Student Team Presentations using The Learning Cycle Model
Week 7	Student Team Presentations using The Learning Cycle Model
Week 8	Student Team Presentations using The Learning Cycle Model
Week 9	Science Process Skills & Activities using The Learning Cycle Model
Week 10	Science Process Skills & Activities, The Importance of Questioning
Week 11	Science Process Skills & Activities, Scope & Sequence Charts
Science Concepts	
Developing Clarity of Learning (The Essential Understanding: Understand, Know, Be Able to Do—skills)	
Week 12	Science Process Skills & Activities using The Learning Cycle Model
Week 13	Demonstration Lessons (Discrepant Events)
Other Science Teaching Strategies	
Simulations	
Project Based Learning	
Week 14	Resources Available for Teachers

ELE 3290 References

Revised Spring, 2009

Students with Disabilities: If you have a documented disability and wish to discuss academic accommodations, please contact the Office of Disability Services at 581-6583.

Revised Spring, 2009