
Teacher Licensure option for Computer Science

The state of Illinois has recently placed an emphasis on the teaching and learning of
computer science in K-12. The proposed teacher licensure minor will address the
Illinois standards for computer science and prepare candidates to teach both
regular and AP computer science at the secondary level. The following pages show
how the proposed coursework addresses relevant standards for computer science.

Proposed Program
Completion of a teacher licensure minor does not guarantee that the individual will
be granted an endorsement to teach in that field. Individuals must meet all
requirements (including state tests) as set forth by the Illinois State Board of
Education to be granted an endorsement in a second teaching field. Candidates must
maintain a

The computer science teacher minor requires completion of the following courses:

CSM 2170 – Computer Science I (4 credits, MAT 1441G co-requisite)
CSM 2670 – Object Oriented Programming (4 credits)
CSM 3670 - Principles of Computer Systems (3 credits)
CSM 3870 - Data Structures (3 credits)
CSM 4880 - Design and Analysis of Algorithms (3 credits)
CSM 3700 – Teaching Computer Science (2 credits)

Recommended: MAT 2345 – Discrete Mathematics (3 credits)

Total = 19 credits

 Courses
Standards 2170 2670 3670 3870 4880 3470

Demonstrate understanding of the design process (e.g., define the
problem; generate ideas; build, test, and improve solutions).

x x x x x

Demonstrate understanding of the role of creativity,
communication, and collaboration in problem solving.

x x x x x

Apply knowledge of connections between elements of
mathematics and computer science (e.g., base-two, base-ten, and
hexadecimal number systems; logic; sets; functions).

 x

Apply knowledge of how binary sequences represent information
(e.g., computer programs, numbers, texts, images).

x x x

Demonstrate knowledge of abstraction to manage problem
complexity by using it to decompose problems into subproblems.

x x x x x

Use visual representations (e.g., flowcharts, trace tables) to analyze
problem states, control structures, and flow of execution, and to
identify program outputs.

 x x x x

Apply knowledge of sequence, conditionals, iteration, and
recursion as they relate to algorithms. x x x

Analyze an algorithm to identify and correct errors. x x x x
Analyze algorithms for searching, sorting, and finding the
minimum, maximum, and/or average. x x

Select or modify a given algorithm to solve a problem. x x x x
Evaluate algorithms for efficiency. x x

Apply knowledge of functions/methods and parameters. x x x x
Apply the principle of decomposition to a problem by defining new
functions/methods and classes. x x x x

Apply knowledge of encapsulation and information hiding. x x x
Apply knowledge of hierarchies and inheritance. x
Demonstrate knowledge of polymorphism, composition, and
aggregation. x x

Apply knowledge of concepts and principles related to the use of
libraries and APIs. x x x

Demonstrate understanding of Integrated Development
Environments (IDEs) and their uses in program development. x x x

Demonstrate knowledge of computational tools and techniques
used to create digital artifacts (e.g., images, animation, video,
multimedia, apps).

 x

Demonstrate knowledge of the tools that support program
execution (e.g., operating systems, compilers, interpreters). x x x x

 Courses

Standards 2170 2670 3670 3870 4880 3470
Demonstrate knowledge of primitive data types (e.g., Boolean,
integer, floating point, string, char). x x x x x

Perform operations on various data types. x x x x
Apply properties of lists and arrays to solve problems. x x x x x

Apply knowledge of comparison operators for primitive data types x x x x x
Apply knowledge of Boolean logic x x x x x
Apply principles of conditional control structures (e.g., if
statements, switch statements). x x x x x

Apply principles of iterative control structures (e.g., while loops,
for loops). x x x x x

Apply principles of recursion. x x x x x

Demonstrate knowledge of the software development process
(e.g., design, coding, testing, verification). x x x x x

Demonstrate knowledge of error types (e.g., syntax, runtime,
logic). x x x x x

Analyze code segments to identify and correct errors x x x x x
Apply principles of debugging software programs (e.g., adding
output statements, hand tracing, using a debugger). x x x x x

Demonstrate understanding of program qualities (e.g., usability,
efficiency, portability, scalability). x x x x

Demonstrate knowledge of the structure of the Internet and the
flow of information through the Internet (e.g., routing, packet
switching).

 x

Demonstrate knowledge of properties, characteristics, and uses of
communication protocols. x

Demonstrate knowledge of cloud computing and cloud services. x
Demonstrate knowledge of issues and techniques related to data
security and encryption. x

Demonstrate knowledge of tools (e.g., HTML, formatting and
scripting tools) and design techniques used to create Web pages. x

Demonstrate knowledge of the uses of data collected through the
Internet and the tools and techniques for locating, collecting,
cleaning, and analyzing the data.

 x

 x

 Courses
Standards 2170 2670 3670 3870 4880 3470

Demonstrate knowledge of issues and practices related to digital
citizenship. x

Demonstrate knowledge of legal and ethical issues related to
computing practices (e.g., software privacy, intellectual property
rights, scams, data collection and use).

 x

Demonstrate understanding of how computing technologies and
practices have influenced society (e.g., individual and collective
behaviors, enhancing new forms of communication and
collaboration, virtual reality, open-source licensing).

 x

Demonstrate understanding of how computer science has
influenced innovations in art, science, health care, education, and
commerce.

 x

Demonstrate knowledge of issues related to personal safety and to
security and privacy of personal information x

Demonstrate knowledge of the implications of artificial
intelligence, robotics, and microcontrollers x

Demonstrate knowledge of developing lessons that use effective
and engaging practices and methodologies (e.g., inquiry, real-
world computing problems, culturally relevant project-based
methodologies, encouraging problem solving).

x x x x

Demonstrate knowledge of effective approaches for promoting
collaboration (e.g., group work, peer instruction). x x x x

Demonstrate knowledge of approaches for developing effective
communication skills x x x x

Demonstrate understanding of problematic concepts and
constructs in computer science and appropriate strategies to
address them

x x x x

Demonstrate knowledge of environments and activities, including
unplugged activities, to foster creativity. x x x x

Apply knowledge of instructional strategies, tools, technologies,
and practices to support the diverse needs of all learners, paying
particular attention to the needs of students from groups
underrepresented in computer science (i.e., as defined by race,
gender, learning differences).

x x x x

Demonstrate knowledge of a variety of assessments (e.g.,
formative, summative, reflective questioning) appropriate for use
in computer science.

x x x x

Demonstrate knowledge of how physical environments can affect
learning x

Department/School Curriculum Committee: 8/27/21
College Curriculum Committee: 9/8/21
Council on Teacher Education:

