Department of Mathematics and Computer Science

Friday, January 25, 2019, 4:10 pm COLLOQUIUM TALK Speaker: Gregory Galperin (EIU) Old Main 2231

Two Remarkable Constructions in Hyperbolic Plane \mathbb{H}^2 and Their Justification in the Klein Model \mathbb{K}^2

Abstract:

In hyperbolic geometry \mathbb{H}^2 , there is a very special and unique correspondence $x \leftrightarrow \Pi(x)$ between a segment of length x and the respective acute angle $\Pi(x)$ called "the angle of parallelism." In my talk, I will give solutions to the following two construction problems:

I Given segment x, construct the angle of parallelism $\Pi(x)$; and the inverse problem:

II Given an acute angle φ , construct a segment x whose angle of parallelism $\Pi(x)$ equals φ .

Both constructions must be done in the hyperbolic plane \mathbb{H}^2 by "hyperbolic" compass and "hyperbolic" straightedge.

<u>The first</u> construction belongs to *Janos Bolyai*, one of the creators of hyperbolic geometry. It is very elegant; however, to justify his construction, Bolyai attracts non-elementary tough results from the solid hyperbolic geometry \mathbb{H}^3 .

The second construction is based partially on the Bolyai's construction and partially on a theorem by american mathematician *George Martin*. A known proof of Martin's theorem is purely hyperbolic and is based on the Bolyai-Lobachevsky formula for the angle of parallelism and for hyperbolic trigonometry.

I will justify both constructions and prove the Martin theorem in the disc Klein model \mathbb{K}^2 of the hyperbolic plane \mathbb{H}^2 . Both of my proofs are very simple and are based on elementary Euclidean geometry and basic Euclidean trigonometry.

All the necessary terms: the angle of parallelism $\Pi(x)$, the Klein model \mathbb{K}^2 , the measurement of distances in the Klein model, etc., will be introduced and explained during the talk.

SNACKS IN FACULTY LOUNGE AT 3:30 PM. EVERYONE WELCOME (EVEN IF YOU ARE UNABLE TO ATTEND THE TALK)