Department of Mathematics and Computer Science

Friday, January 25, 2019, 4:10 pm
COLLOQUIUM TALK
Speaker: Gregory Galperin (EIU)
Old Main 2231

Two Remarkable Constructions in Hyperbolic Plane \mathbb{H}^{2} and Their Justification in the Klein Model \mathbb{K}^{2}

Abstract

: In hyperbolic geometry \mathbb{H}^{2}, there is a very special and unique correspondence $x \leftrightarrow \Pi(x)$ between a segment of length x and the respective acute angle $\Pi(x)$ called "the angle of parallelism." In my talk, I will give solutions to the following two construction problems:

I Given segment x, construct the angle of parallelism $\Pi(x) ;$ and the inverse problem: II Given an acute angle φ, construct a segment x whose angle of parallelism $\Pi(x)$ equals φ. Both constructions must be done in the hyperbolic plane \mathbb{H}^{2} by "hyperbolic" compass and "hyperbolic" straightedge.

The first construction belongs to Janos Bolyai, one of the creators of hyperbolic geometry. It is very elegant; however, to justify his construction, Bolyai attracts non-elementary tough results from the solid hyperbolic geometry \mathbb{H}^{3}.

The second construction is based partially on the Bolyai's construction and partially on a theorem by american mathematician George Martin. A known proof of Martin's theorem is purely hyperbolic and is based on the Bolyai-Lobachevsky formula for the angle of parallelism and for hyperbolic trigonometry.

I will justify both constructions and prove the Martin theorem in the disc Klein model \mathbb{K}^{2} of the hyperbolic plane \mathbb{H}^{2}. Both of my proofs are very simple and are based on elementary Euclidean geometry and basic Euclidean trigonometry.

All the necessary terms: the angle of parallelism $\Pi(x)$, the Klein model \mathbb{K}^{2}, the measurement of distances in the Klein model, etc., will be introduced and explained during the talk.

