Department of Mathematics and Computer Science

Friday, October 26, 2018, 4:10 pm
COLLOQUIUM TALK
Speaker: Gregory Galperin (EIU)
Old Main 2231

Non-Convex Polyhedra inscribed in a sphere, and a New Intriguing 4-dimensional Polytope

Abstract

If a polygon is inscribed in a circle, it must be convex; if a polygon is circumscribed around a circle, it also must be convex. Its easy to formulate the same statement for 3-dimensional polyhedra inscribed in or circumscribed around a 2-dimensional sphere.

However, a proof of this spacial statement similar to the one for the inscribed polygons fails, and its not immediate to find a flaw in the respective proof. It turns out that any such proof cannot be correct: it turns out that there exists a non-convex solid polyhedron with 5 vertices inscribed in a sphere! In my talk I will show how to construct such a polyhedron P_{5} and then prove a general statement for a family of non-convex polyhedra P_{n} with a prescribed number vertices $n>4$ situated on the surface of a sphere.

Then I will discuss non-convex polyhedra circumscribed around a sphere.
The remaining part of my talk will be devoted to a description of a very intriguing and exotic convex 4 -dimensional polytope Q_{n}^{4} with a prescribed number $n \geq 5$ of vertices which has no diagonals inside it.

The 4D-polytope Q_{n}^{4} has exactly $\binom{n}{2}=n(n-1) / 2$ edges which means that any segment containing arbitrary two vertices of the polytope Q_{n}^{4} must be an edge of this polytope.

In the 3D-space such a polyhedron exists only if $n=4$, i.e. for simplexes only!

