Department of Mathematics and Computer Science

Friday, November 2, 2018, 4:10 pm COLLOQUIUM TALK Speaker: Gregory Galperin (EIU) Old Main 2210

Projections of Lines in Hyperbolic Geometry

Abstract:

In Euclidean geometry \mathbb{E}^2 , the orthogonal projection of one straight line, m, onto another straight line, ℓ , covers the line ℓ entirely. In hyperbolic (Lobachevsky) geometry \mathbb{H}^2 the situation is drastically different: the orthogonal projection $\operatorname{proj}_{\ell}(m)$ will never cover the line ℓ entirely! It's either a <u>finite open interval</u> or an <u>open ray</u>. The first case happens for intersecting and divergently <u>parallel</u> lines, while the second case, the ray in the projection, happens when the lines m and ℓ are asymptotically parallel.

I will prove this statement first without any model of hyperbolic plane, and then, using the Klein model \mathbb{K}^2 , will derive the formula for the length of the interval in the projection, $|\operatorname{proj}_{\ell}(m)|$, in terms of either the angle α between the intersecting lines m and ℓ , or in terms of the length p of the common perpendicular in the case when the lines m and ℓ are divergent. During this proof, I will use the Lobachevsky-Bolyai formula for the angle of parallelism φ which I also am going to derive.

In conclusion, I will formulate the intriguing <u>Bolyai construction</u> of the angle of parallelism φ , for which I will give my own proof in the Klein model \mathbb{K}^2 .

All the necessary terms: angle of parallelism, the Klein model \mathbb{K}^2 , the measurement of distances in the Klein model, etc., will be introduced and explained during the talk.

SNACKS IN FACULTY LOUNGE AT 3:30 PM. EVERYONE WELCOME (EVEN IF YOU ARE UNABLE TO ATTEND THE TALK)