Department of Mathematics and Computer Science

Friday, November 2, 2018, 4:10 pm
COLLOQUIUM TALK
Speaker: Gregory Galperin (EIU)
Old Main 2210

Projections of Lines in Hyperbolic Geometry

Abstract

: In Euclidean geometry \mathbb{E}^{2}, the orthogonal projection of one straight line, m, onto another straight line, ℓ, covers the line ℓ entirely. In hyperbolic (Lobachevsky) geometry \mathbb{H}^{2} the situation is drastically different: the orthogonal projection $\operatorname{proj}_{\ell}(m)$ will never cover the line ℓ entirely! It's either a finite open interval or an open ray. The first case happens for intersecting and divergently parallel lines, while the second case, the ray in the projection, happens when the lines m and ℓ are asymptotically parallel.

I will prove this statement first without any model of hyperbolic plane, and then, using the Klein model \mathbb{K}^{2}, will derive the formula for the length of the interval in the projection, $\left|\operatorname{proj}_{\ell}(m)\right|$, in terms of either the angle α between the intersecting lines m and ℓ, or in terms of the length p of the common perpendicular in the case when the lines m and ℓ are divergent. During this proof, I will use the Lobachevsky-Bolyai formula for the angle of parallelism φ which I also am going to derive.

In conclusion, I will formulate the intriguing Bolyai construction of the angle of parallelism φ, for which I will give my own proof in the Klein model \mathbb{K}^{2}.

All the necessary terms: angle of parallelism, the Klein model \mathbb{K}^{2}, the measurement of distances in the Klein model, etc., will be introduced and explained during the talk.

