Friday, May 1, 2020, 4:10 pm

COLLOQUIUM TALK

Speaker: Andrew Schwartz (Southeast Missouri State University) Zoom Meeting

Zero Forcing Sets in H-matchable graphs and a few other infinite classes of graphs

Abstract:

In this talk, a graph G = (V(G), E(G)) has no isolated vertices and is finite, simple, and undirected. Fix a non-trivial connected graph H. A perfect Hmatching of a graph G is a set $\{H_1, ..., H_n\}$ of vertex-induced subgraphs of G(i.e., all $G[V(H_i)] = H_i$) where $\{V(H_1), ..., V(H_n)\}$ partitions V(G) and each subgraph $H_i \cong H$. Two perfect H-matchings of G are equal iff they are equal as sets of graphs. A perfect matching of G is then a perfect P_2 -matching of G. We say that G is H-matchable (matchable) iff G has a perfect H-matching (perfect matching). We will explore the possibilities for a zero forcing number of an H-matchable graph as well as a few other infinite classes of graphs.

Keywords: perfect matching, perfect $H\mbox{-}matching,$ trees, graphs, zero forcing number