DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY EASTERN ILLINOIS UNIVERSITY 2019 Maurice Shepherd Chemistry Contest

Useful Information: $N_{A}=6.022 \times 10^{23} / \mathrm{mol} ; \mathrm{R}=0.0821 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathrm{K} ; \mathrm{c}=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$; $1000 \mathrm{~mL}=1 \mathrm{~L} ; \mathrm{K}={ }^{\circ} \mathrm{C}+273.15 ; 1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{Hg} ; 1 \mathrm{Hertz}, \mathrm{Hz}=1 / \mathrm{s}=\mathrm{s}^{-1}$

Note: Some problems include the molar mass (molecular weight) of one or more substances. This information appears in parenthesis after the substance's formula. Example: water, $\mathrm{H}_{2} \mathrm{O}(\boldsymbol{\mathcal { M }}=18.0 \mathrm{~g} / \mathrm{mol})$.

1. One hundred million dozen popsicles are sold annually. This is equivalent to \qquad popsicles.
a. 1200
b. 1.2×10^{9}
c. 100×10^{-6}
d. 1.2×10^{-10}
e. 120 billion
2. A calculator result of 0.0038703365 is obtained from a multi-step calculation. This result when rounded to four (4) significant figures is:
a. 0.0040
b. 0.0039
c. 3.8703×10^{3}
d. 0.0038703
e. 3.870×10^{-3}
3. Sand is primarily silica $\left(\mathrm{SiO}_{2}\right)$ in the form of quartz. Geologists define sand as particles ranging in size from 0.0063 cm to 0.20 cm , between silt and gravel on the size scale. 0.0063 cm is equivalent to:
a. $\quad 0.063 \mathrm{~mm}$ (read: millimeters)
b. 630 km (read: kilometers)
c. $\quad 0.63 \mathrm{~m}$
d. $6.3 \mu \mathrm{~m}$ (read: micrometers)
e. 6300 nm (read: nanometers)
4. The surface area (SA) to volume (V) ratio is a measurement used to characterize particles. Suppose you determine the $\frac{S A}{V}$ ratio of a cube having an edge length of 1 cm . What unit does this ratio have? (SA = number of sides x area of each side)
a. cm^{6}
b. $\quad \mathrm{cm}^{-3}\left(=\frac{1}{\mathrm{~cm}^{3}}\right)$
c. cm^{4}
d. $\mathrm{cm}^{-1}\left(=\frac{1}{\mathrm{~cm}}\right)$
e. no unit (dimensionless)
5. Sequestering CO_{2} is a possible way to reduce CO_{2} emissions. About 45 metric tons of $\mathrm{CO}_{2} /$ year can be sequestered currently, but about 4500 metric tons of CO_{2} /year need to be sequestered if this approach is to be effective. The needed sequestering capacity is what multiple of the current sequestering capacity?
a. 10^{3}
b. 10^{-2}
c. 100
d. 203,000
e. 4450
6. Dry sand has a bulk density of $80 \mathrm{lbs} / \mathrm{ft}^{3}$ (read: pounds/cubic foot). Determine the volume occupied by 2.2×10^{3} pounds of sand in cubic yards, yd^{3} (1 yard $=3$ feet)
a. $28 \mathrm{yd}^{3}$
b. $0.036 \mathrm{yd}^{3}$
c. $1.1 \times 10^{-3} \mathrm{yd}^{3}$
d. $7.2 \times 10^{3} \mathrm{yd}^{3}$
e. $1.0 \mathrm{yd}^{3}$
7. The density of cobalt is $8.90 \mathrm{~g} / \mathrm{cm}^{3}$ and the density of aluminum is $2.71 \mathrm{~g} / \mathrm{cm}^{3}$. The mass of aluminum that occupies the same volume as 66.7 g of cobalt is:
a. 2.77 g
b. 20.3 g
c. $\quad 0.362 \mathrm{~g}$
d. $\quad 1.61 \times 10^{3} \mathrm{~g}$
e. 0.00457 g
8. Water can be decomposed into hydrogen and oxygen by electrolysis. Knowing that water is 11.2% hydrogen by mass, what mass of hydrogen is produced by the electrolysis of 625 g of water?
a. 7000 g
b. 5.58 kg
c. 0.558 g
d. 70 g
e. $\quad 0.179 \mathrm{~kg}$
9. An intravenous glucose solution is 5.3% glucose by mass. Determine the mass of this solution that contains 74 g of glucose.
a. $\quad 1.4 \mathrm{~kg}$
b. 3.9 g
c. $\quad 1.4 \mathrm{mg}$
d. $3.9 \times 10^{3} \mathrm{~g}$
e. 950 g
10. The ion ${ }^{56} \mathrm{Fe}^{3+}$ has __ protons, __ neutrons, and __ electrons.
a. $30,26,27$
b. $26,30,23$
c. $20,36,23$
d. $26,30,29$
e. $30,26,33$
11. Sodium borate, $\mathrm{Na}_{2} \mathrm{~B}_{\mathrm{x}} \mathrm{O}_{7}$ has a formula mass of $201.22 \mathrm{amu} . \mathrm{x}=$ \qquad in sodium borate.
a. 1
b. 3
c. 4
d. 5
e. 7
12. The formula for tin(IV) bromide is:
a. $\mathrm{Ti}_{4} \mathrm{~B}_{3}$
b. $\mathrm{Ti}{ }_{4} \mathrm{Br}$
c. SnB_{4}
d. TiB_{4}
e. SnBr_{4}
13. Considering and applying the rules for ionic formulas, which formula is the likely formula for the Al containing mineral cryolite?
a. $\mathrm{NaAl}_{2}(\mathrm{OH})_{4}$
b. $\mathrm{Na}_{2} \mathrm{Al}_{3}\left(\mathrm{SO}_{4}\right)_{2}$
c. CaAlBr_{2}
d. $\mathrm{Na}_{3} \mathrm{AlF}_{6}$
e. $\mathrm{K} 2 \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
14. There are \qquad electrons in $1.0 \times 10^{-3} \mathrm{~g}$ of Li atoms:
a. 8.7×10^{19}
b. 8.7×10^{22}
c. 2.6×10^{20}
d. 2.6×10^{23}
e. 1.8×10^{24}
15. Jade has the formula $\mathrm{NaAlSi}_{2} \mathrm{O}_{6}$. The mass percent of Si in jade is:
a. 14.9%
b. 27.8%
c. 56.2%
d. 29.8%
e. 13.9%
16. One mole of which of the following compounds has the smallest mass?
a. RbF
b. Br_{2}
c. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
d. CaF_{2}
e. BF_{3}
17. An intermetallic compound used to make permanent magnets for high fidelity speakers is $33.78 \% \mathrm{Sm}$ (samarium, $Z=62$) and 66.22% Co by mass. Determine the empirical formula of this compound.
a. SmCo_{5}
b. SmCo_{2}
c. $\mathrm{Sm}_{2} \mathrm{Co}_{3}$
d. $\mathrm{Sm}_{3} \mathrm{Co}_{7}$
e. SmCo_{4}
18. The reaction: $\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{KNO}_{3}(\mathrm{aq})$ is $\mathrm{a}(\mathrm{n})$ \qquad reaction.
a. decomposition
b. combination
c. neutralization
d. single replacement
e. double replacement
19. Vanilmandelic acid, $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{5}$, is a precursor of synthetic vanillin (vanilla). It is made by a combination reaction between guaiacol $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{2}$ and another compound. The formula of this compound is:
a. CO_{2}
b. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ClO}_{3}$
c. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{4}$
d. $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{3}$
e. $\mathrm{H}_{2} \mathrm{CO}_{3}$
20. When the unbalanced equation $\mathrm{Sb}_{2} \mathrm{O}_{3}+\mathrm{HF} \rightarrow \mathrm{SbF}_{3}+\mathrm{H}_{2} \mathrm{O}$ is balanced (simplest whole number coefficients), the coefficient in front of the HF would be:
a. 2
b. 3
c. 4
d. 5
e. 6
21. Which of the following equations is not balanced? (Remember: if there is no coefficient preceding a formula, its coefficient is understood to be 1.)
a. $3 \mathrm{Mg}+\mathrm{N}_{2} \rightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2}$
b. $\mathrm{H}_{2} \mathrm{~S}+2 \mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
c. $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
d. $2 \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{C} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{Fe}$
e. $\mathrm{C}_{6} \mathrm{H}_{6}+3 \mathrm{H}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12}$
22. Copper is a more active metal than silver and it will displace silver ion from solution. Thus, when a piece of copper wire is immersed in a solution containing silver(I) ion, the colorless solution slowly turns blue indicating the formation of copper ion and silver precipitates from solution. Which ionic equation corresponds to this description?
a. $2 \mathrm{Cu}(\mathrm{s})+\mathrm{Ag}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{Ag}(\mathrm{s})$
b. $\quad \mathrm{Cu}^{2-}(\mathrm{aq})+\mathrm{Ag}(\mathrm{s}) \rightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{Ag}^{2-}(\mathrm{aq})$
c. $2 \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{Ag}(\mathrm{s}) \rightarrow 2 \mathrm{Cu}(\mathrm{s})+\mathrm{Ag}^{2+}(\mathrm{aq})$
d. $\mathrm{Cu}(\mathrm{s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})$
e. $\mathrm{Cu}(\mathrm{s})+2 \mathrm{Ag}(\mathrm{s}) \rightarrow \mathrm{Cu}^{2-}(\mathrm{aq})+2 \mathrm{Ag}^{+}(\mathrm{aq})$
23. The Hope Diamond is blue since it contains $8.0 \mu \mathrm{~g} / \mathrm{g}$ (read: micrograms per gram ($=8.0 \mathrm{ppm}$)) of boron. Given that the diamond weighs 9.11 g , the number of boron atoms in the diamond is:
a. $\quad 6.3 \times 10^{12}$
b. 4.1×10^{12}
c. $\quad 6.3 \times 10^{16}$
d. 4.1×10^{18}
e. 6.3×10^{20}
24. Elemental arsenic can be obtained by the reaction: $2 \mathrm{As}_{2} \mathrm{O}_{3}+3 \mathrm{C} \rightarrow 4 \mathrm{As}+3 \mathrm{CO}_{2}$. The mass of $\mathrm{As}_{2} \mathrm{O}_{3}$ ($\mathcal{M}=197.84 \mathrm{~g} / \mathrm{mol}$) needed to produce 64.0 g of As by this reaction is:
a. 32.1 g
b. 84.5 g
C. 98.9 g
d. 169 g
e. 338 g
25. The reaction: $\mathrm{CHCl}_{3}+2 \mathrm{HF} \rightarrow \mathrm{CHClF}_{2}+2 \mathrm{HCl}$ is the first reaction in series of reactions used to make Teflon. The number of moles CHCl_{3} that must react to produce $41.1 \mathrm{~g} \mathrm{HCl}(\mathcal{M}=36.46 \mathrm{~g} / \mathrm{mol})$ is:
a. 0.56
b. 1.13
c. 1.28
d. 2.26
e. 20.6
26. Beryllium carbide can be made by the reaction: $2 \mathrm{BeO}+3 \mathrm{C} \rightarrow \mathrm{Be}_{2} \mathrm{C}+2 \mathrm{CO}_{2}$. If 37.7 g of $\mathrm{Be}_{2} \mathrm{C}(\boldsymbol{\mu}$ $=30.04 \mathrm{~g} / \mathrm{mol})$ is obtained by the reaction of 251 g of $\mathrm{BeO}(\mathcal{M}=25.01 \mathrm{~g} / \mathrm{mol})$ and excess carbon, the percent yield is:
a. 12.5
b. 15.0
c. 17.7
d. 25.0
e. 29.9
27. The compound SeF_{4} can be made by the reaction: $3 \mathrm{Se}+4 \mathrm{CIF}_{3} \rightarrow 3 \mathrm{SeF}_{4}+2 \mathrm{Cl}_{2}$. If 5.0 mol of Se and 6.0 mol of ClF_{3} are reacted, the maximum number of moles of SeF_{4} that can produced is:
a. 5.0
b. 4.5
c. 8.0
d. 15
e. 2.5
28. Which of the following is a weak acid in water?
a. HNO_{3}
b. acetic acid
c. sulfuric acid
d. HCl
e. all are weak acids
29. 1.0 L of $1.0 \mathrm{M} \mathrm{KBr}(\mathrm{aq})$ solution contains \qquad solute particles as 1.0 L of 1.0 M sucrose solution $\left(\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{aq})\right)$ and \qquad solute particles as 1.0 L of $1.0 \mathrm{M} \mathrm{FeCl}_{3}(\mathrm{aq})$ solution.
a. twice as many, half as many
b. the same number of, half as many
c. twice as many, twice as many
d. half as many, the same number of
e. the same number of, the same number of
30. A solution of $\mathrm{NiCl}_{2}(\boldsymbol{\mathcal { M }}=129.6 \mathrm{~g} / \mathrm{mol})$ is prepared by dissolving 4.86 g of NiCl_{2} in enough water to make 125.0 mL of solution. The molarity of NiCl_{2} in this solution is:
a. $\quad 3.33 \mathrm{M}$
b. 0.0188 M
c. $\quad 0.0750 \mathrm{M}$
d. $\quad 5.04 \mathrm{M}$
e. 0.300 M
31. The concentration of sugar in a particular juice drink is 0.41 M . If the sugar is glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}, \boldsymbol{\mathcal { M }}=\right.$ $180.15 \mathrm{~g} / \mathrm{mol}$), how many moles of carbon atoms from glucose are in 177 mL of this drink?
a. $\quad 0.073 \mathrm{~mol}$
b. $\quad 0.44 \mathrm{~mol}$
C. $\quad 0.86 \mathrm{~mol}$
d. 2.3 mol
e. 28 mol
32. Muriatic acid is a solution of hydrochloric acid sold in hardware stores for cleaning brick and tile. It is a 5.0 M HCl solution. The directions for cleaning tile with muriatic acid say to dissolve $60 \mathrm{~mL}(1 / 4 \mathrm{cup})$ of muriatic acid in enough water to make 3.8 L (1 gallon) solution. Determine the molarity of hydrochloric acid in a solution prepared in this manner.
a. $\quad 0.079 \mathrm{M}$
b. $\quad 0.32 \mathrm{M}$
c. 3.2 M
d. 1.3 M
e. 79 M
33. One mole of an ideal gas is placed in a cylinder with a moveable piston. Which of the following properties of the confined gas does not change as the piston is compressed:
a. volume
b. mass and volume
c. mass
d. density
e. volume and density
34. Under which conditions will 1.0 mole of an ideal gas be at the lowest pressure?
a. $V=100 \mathrm{~mL}, \mathrm{~T}=300 \mathrm{~K}$
b. $V=10.0 \mathrm{~L}, \mathrm{~T}=125^{\circ} \mathrm{C}$
c. $V=1.0 \mathrm{~L}, \mathrm{~T}=25^{\circ} \mathrm{C}$
d. $V=10.0 \mathrm{~L}, \mathrm{~T}=300 \mathrm{~K}$
e. $V=100 \mathrm{~mL}, \mathrm{~T}=500 \mathrm{~K}$
35. A 2.48 g sample of an unknown gas occupies 1.07 L at 2.0 atm and 373 K . This gas is:
a. H_{2}
b. N_{2}
c. O_{2}
d. F_{2}
e. Cl_{2}
36. Lithium metal reacts with water to form hydrogen gas: $2 \mathrm{Li}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{LiOH}$ (aq). How many grams of Li are needed to generate 48.0 L of H_{2} gas at a pressure of 0.995 atm and a temperature of $32.0^{\circ} \mathrm{C}$.
a. 26.5 g
b. $\quad 13.2 \mathrm{~g}$
C. 6.63 g
d. 126 g
e. 0.275 g
37. One mole of which gas molecules or atoms would have the greatest average kinetic energy (KE) at $25.0^{\circ} \mathrm{C}$ and 1 atm .
a. $\mathrm{F}_{2}(\mathrm{~g})$
b. $\operatorname{Ar}(\mathrm{g})$
c. $\mathrm{CH}_{4}(\mathrm{~g})$
d. $\quad \mathrm{N}_{2}(\mathrm{~g})$
e. all have the same KE
38. The \qquad subshell contains only one orbital.
a. 5 d
b. $6 f$
c. 4 s
d. 3 d
e. $1 p$
39. If an electron has a principal quantum number (n) of 7 and an angular momentum quantum number
(I) of 3 , the subshell designation is \qquad .
a. 7 f
b. 7 s
c. $7 p$
d. $3 f$
e. 3 d
40. The electron configuration of the valence electrons of an atom in its ground state is $n s^{2} n p^{1}$. This atom is a group \qquad element.
a. $1 \mathrm{~A}(1)$
b. $3 \mathrm{~A}(13)$
c. $5 \mathrm{~A}(15)$
d. $3 \mathrm{~B}(3)$
e. $1 \mathrm{~B}(11)$
41. The ground state electron configuration of scandium is \qquad .
a. $[K r] 5 s^{2} 4 d^{1}$
b. $\quad[\mathrm{Ne}] 3 \mathrm{~s}^{2} 2 \mathrm{~d}^{1}$
c. $[\mathrm{Ar}] 4 s^{2} 3 p^{1}$
d. $[A r] 4 s^{2} 4 p^{1}$
e. $[A r] 4 s^{2} 3 d^{1}$
42. Which of the following ions have a noble gas electron configuration: $\mathrm{Cl}^{+}, \mathrm{H}^{-}, \mathrm{Al}^{1+}, \mathrm{Cs}^{2+}$, and P^{3-} ?
a. $\mathrm{Cl}^{+}, \mathrm{H}^{-}, \mathrm{Al}^{3+}$
b. $\mathrm{H}^{-}, \mathrm{Al}^{3+}, \mathrm{Cs}^{2+}$
c. $\mathrm{Cl}^{+}, \mathrm{Cs}^{2+}$
d. $\mathrm{H}^{-}, \mathrm{Al}^{3+}, \mathrm{P}^{3-}$
e. $\mathrm{Cs}^{2+}, \mathrm{P}^{3-}$
43. A selenium atom has ___ core electrons and ___ valence electrons.
a. 24,4
b. 26,1
c. 28,6
d. 4,14
e. 24,6
44. The first ionization energy is the energy required to remove the least tightly held electron from a gaseous atom: $\mathrm{X}(\mathrm{g}) \rightarrow \mathrm{X}^{+}(\mathrm{g})+\mathrm{e}^{-}$. Which of the following elements would be expected to have the greatest first ionization energy?
a. aluminum
b. silicon
c. sulfur
d. chlorine
e. argon
45. Which of the following atoms has the smallest atomic radius?
a. F
b. Ba
c. I
d. Li
e. Ni
46. The valence electron count including adjustment for charge in the $\mathrm{ICl}_{4}{ }^{-}$ion is:
a. 35
b. 9
c. 40
d. 36
e. 32
47. The skeletal Lewis structure of $\mathrm{N}_{2} \mathrm{H}_{2}$ is shown at right. When this structure is completed:
a. there will be a nitrogen-nitrogen triple bond
b. there will be a nitrogen-nitrogen double bond
c. each nitrogen will have one nonbonding electron pair
d. each nitrogen will have two nonbonding electron pairs
e. each hydrogen will have one nonbonding electron pair
48. Using the VSEPR model, the electron-domain geometry of the central atom in O_{3} is \qquad
a. linear
b. trigonal planar
c. tetrahedral
d. trigonal bipyramidal
e. octahedral
49. Which of the following is an endothermic process?
a. freezing water
b. burning gasoline
c. boiling water
d. condensation of water vapor
e. all are endothermic process
50. How much heat is released when 100.0 kg of $\mathrm{H}_{2} \mathrm{O}$ cools from $75.0^{\circ} \mathrm{C}$ to $25.0^{\circ} \mathrm{C}$. The specific heat of water is $4.184 \mathrm{~J} / \mathrm{g}^{-} \mathrm{C}$.
a. 418 kJ
b. $\quad 0.478 \mathrm{~kJ}$
c. $1.20 \times 10^{3} \mathrm{~kJ}$ d. 8.37 kJ
e. $2.09 \times 10^{4} \mathrm{~kJ}$
