DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY EASTERN ILLINOIS UNIVERSITY 2019 Maurice Shepherd Chemistry Contest

Useful Information: $N_A = 6.022 \times 10^{23}$ /mol; R = 0.0821 L-atm/mol-K; $c = 3.00 \times 10^8$ m/s; 1000 mL = 1 L; $K = {}^{\circ}C + 273.15$; 1 atm = 760 mm Hg; 1 Hertz, Hz = 1/s = s⁻¹

Note: Some problems include the molar mass (molecular weight) of one or more substances. This information appears in parenthesis after the substance's formula. Example: water, H₂O (\mathcal{M} = 18.0 g/mol).

- 1. One hundred million dozen popsicles are sold annually. This is equivalent to _____ popsicles. a. 1200 b. 1.2×10^9 c. 100×10^{-6} d. 1.2×10^{-10} e. 120 billion
- A calculator result of 0.0038703365 is obtained from a multi-step calculation. This result when rounded to four (4) significant figures is:
 a. 0.0040
 b. 0.0039
 c. 3.8703 x 10³
 d. 0.0038703
 e. 3.870 x 10⁻³
- 3. Sand is primarily silica (SiO₂) in the form of quartz. Geologists define sand as particles ranging in size from 0.0063 cm to 0.20 cm, between silt and gravel on the size scale. 0.0063 cm is equivalent to:
 a. 0.063 mm (read: millimeters)
 b. 630 km (read: kilometers)
 c. 0.63 m
 d. 6.3 μm (read: micrometers)
 e. 6300 nm (read: nanometers)
- The surface area (SA) to volume (V) ratio is a measurement used to characterize particles. Suppose you determine the ^{SA}/_V ratio of a cube having an edge length of 1 cm. What unit does this ratio have? (SA = number of sides x area of each side)

(SA = number of sides x area of each side) a. cm^{6} b. $cm^{-3} \left(=\frac{1}{cm^{3}}\right)$ c. cm^{4} d. $cm^{-1} \left(=\frac{1}{cm}\right)$ e. no unit (dimensionless)

5. Sequestering CO_2 is a possible way to reduce CO_2 emissions. About 45 metric tons of CO_2 /year can be sequestered currently, but about 4500 metric tons of CO_2 /year need to be sequestered if this approach is to be effective. The needed sequestering capacity is what multiple of the current sequestering capacity?

- a. 10^3 b. 10^{-2} c. 100 d. 203,000 e. 4450
- 6. Dry sand has a bulk density of 80 lbs/ft³ (read: pounds/cubic foot). Determine the volume occupied by 2.2 x 10³ pounds of sand in cubic yards, yd³ (1 yard = 3 feet) a. 28 yd³
 b. 0.036 yd³
 c. 1.1 x 10⁻³ yd³
 - d. $7.2 \times 10^3 \text{ yd}^3$ e. 1.0 yd^3
- 7. The density of cobalt is 8.90 g/cm³ and the density of aluminum is 2.71 g/cm³. The mass of aluminum that occupies the same volume as 66.7 g of cobalt is:
 a. 2.77 g
 b. 20.3 g
 c. 0.362 g
 d. 1.61 x 10³ g
 e. 0.00457 g
- 8. Water can be decomposed into hydrogen and oxygen by electrolysis. Knowing that water is 11.2% hydrogen by mass, what mass of hydrogen is produced by the electrolysis of 625 g of water?
 a. 7000 g
 b. 5.58 kg
 c. 0.558 g
 d. 70 g
 e. 0.179 kg
- 9. An intravenous glucose solution is 5.3% glucose by mass. Determine the mass of this solution that contains 74 g of glucose.
 a. 1.4 kg
 b. 3.9 g
 c. 1.4 mg
 d. 3.9 x 10³ g
 e. 950 g
- 10. The ion ⁵⁶Fe³⁺ has ___ protons, ___ neutrons, and ___ electrons.

 a. 30, 26, 27
 b. 26, 30, 23
 c. 20, 36, 23
 d. 26, 30, 29
 e. 30, 26, 33
- 11. Sodium borate, Na₂B_xO₇ has a formula mass of 201.22 amu. $x = _$ in sodium borate. a. 1 b. 3 c. 4 d. 5 e. 7

12.	The formula for tin(a. Ti ₄ B ₃	IV) k b.	oromide is: Ti₄Br	C.	SnB₄	d.	TiB4	e.	SnBr ₄
13.	Considering and ap containing mineral	oplyii cryo	ng the rules fo lite?	or ionic	formulas, wl	hich fo	ormula is the I	ikely	formula for the Al
	a. NaAl ₂ (OH) ₄	b.	Na ₂ Al ₃ (SO ₄)	2 C.	CaAlBr ₂	d.	Na ₃ AIF ₆	e.	K2AI(NO3)3
14.	There are elect a. 8.7×10^{19}	trons b.	s in 1.0 x 10 ⁻³ 8.7 x 10 ²²	g of Li c.	atoms: 2.6 x 10 ²⁰	d.	2.6 x 10 ²³	e.	1.8 x 10 ²⁴
15.	Jade has the formu a. 14.9%	la N b.	aAlSi₂O ₆ . Th∉ 27.8%	e mass c.	s percent of S 56.2%	Si in ja d.	de is: 29.8%	e.	13.9%
16.	One mole of which a. RbF	of th b.	ne following co Br ₂	ompoui c.	nds has the s CH ₂ Cl ₂	smalle d.	st mass? CaF₂	e.	BF ₃
17.	An intermetallic cor (samarium, $Z = 62$) a. SmCo ₅	npoi and b.	und used to m 66.22% Co b SmCo ₂	ake pe by mas c.	ermanent ma s. Determine Sm ₂ Co ₃	gnets e the e d.	for high fideli empirical form Sm₃Co⁊	ty spe iula o e.	eakers is 33.78% Sm f this compound. SmCo₄
18.	The reaction: HNO: a. decomposition d. single replacem	₃ (aq nent) + KOH (aq)	→ H₂0 b. e.	O (I) + KNO₃ combinatio double repl	(aq) is n acem	s a(n) ent	I C.	reaction. neutralization
19.	Vanilmandelic acid, reaction between g a. CO ₂	, C∍ŀ uaia b.	H₁₀O₅, is a pre col C⁊HଃO₂ ar C₂H₅ClO₃	cursor nd anot c.	of synthetic ther compou C ₂ H ₄ O ₄	vanilli nd. T d.	n (vanilla). It i he formula of C2H2O3	is ma this c e.	de by a combination compound is: H2CO3
20.	When the unbalanc coefficients), the co	ed e	equation Sb ₂ C cient in front of)₃ + HF f the H	[•] → SbF ₃ + H F would be:	l₂O is	balanced (sin	nples	t whole number
	a. 2	b.	3	C.	4	d.	5	e.	6
21.	Which of the following formula its coefficient	ing e ent is	equations is no	ot bala to be 1	nced?(Rem	nembe	er: if there is n	o coe	fficient preceding a
	a. $3Mg + N_2 \rightarrow Mg$ d. $2Fe_2O_3 + 3C \rightarrow$	g ₃ N₂ • 3C	O ₂ + 4Fe	b. e.	¹ H ₂ S + 2O ₂ C ₆ H ₆ + 3H ₂	\rightarrow SO \rightarrow C ₆	2 + 2H 2O H12	C.	$2H_2O_2 \rightarrow 2H_2O + O_2$
22.	Copper is a more a piece of copper wirr turns blue indicating equation correspon	ctive e is g the ids to	e metal than s immersed in a e formation of o this descript	ilver ar a soluti coppe ion?	nd it will displ on containing r ion and silv	lace s g silve er pre	ilver ion from r(I) ion, the co cipitates from	soluti olorle i solu	ion. Thus, when a ss solution slowly tion. Which ionic
	 a. 2Cu (s) + Ag⁻(a c. 2Cu²⁺ (aq) + A e. Cu (s) + 2Ag (s 	aq) - .g (s) 5) →	→ 2Cu ²⁺ (aq)) → 2Cu (s) + Cu ²⁻ (aq) + 2/	+ Ag (s Ag²+ (a \g+ (aq	s) aq) I)	b. d.	Cu ²⁻ (aq) + / Cu (s) + 2Ag	Ag (s) g⁺ (ac) → Cu (s) + Ag²- (aq) J) → Cu²+ (aq) + 2Ag (s)
23.	The Hope Diamond boron. Given that t a. 6.3×10^{12}	l is t he c b.	blue since it co liamond weigh 4.1 x 10 ¹²	ontains ns 9.11 c.	8.0 µg/g (re g, the numb 6.3 x 10 ¹⁶	ad: mi ber of l d.	crograms per boron atoms i 4.1 x 10 ¹⁸	r gran in the e.	n (= 8.0 ppm)) of diamond is: 6.3 x 10 ²⁰
24.	Elemental arsenic o $(\mathcal{M} = 197.84 \text{ g/mol})$ a. 32.1 g	can I nee b.	be obtained by eded to produce 84.5 g	y the re ce 64.0 c.	eaction: 2As ₂) g of As by t 98.9 g	2O₃ + 3 his rea d.	3C → 4As + 3 action is: 169 g	BCO ₂ . e.	The mass of As_2O_3 338 g
25.	The reaction: CHCl Teflon. The numbe a. 0.56	₃ + 2 er of b.	2HF → CHCIF moles CHCl₃ 1.13	2 + 2H that m c.	CI is the first ust react to p 1.28	react produc d.	ion in series c e 41.1 g HCl 2.26	of rea (<i>M</i> = e.	ctions used to make 36.46 g/mol) is: 20.6

26.	Beryllium carbide o = 30.04 g/mol) is o percent yield is:	an b btair	e made by the r ed by the reacti	eacti on of	ion: 2BeO + 3 f 251 g of BeC	вС —) (М	→ Be ₂ C + 2C = 25.01 g/mol	O₂. I) and	If 37.7 g of Be ₂ C (\mathcal{M} d excess carbon, the	
	a. 12.5	b.	15.0	c.	17.7	d.	25.0	e.	29.9	
27.	The compound Sel and 6.0 mol of CIF: a. 5.0	F₄ ca ₃ are b.	an be made by th reacted, the ma 4.5	ne re aximu c.	action: 3Se + um number of 8.0	4CIF mole d.	$F_3 \rightarrow 3\text{SeF}_4 + es of SeF_4 that 15$	2Cl ₂ t can e.	 If 5.0 mol of Se produced is: 2.5 	
28.	Which of the follow a. HNO ₃	ing i b.	s a weak acid in acetic acid	wate c.	er? sulfuric acid	d.	HCI	e.	all are weak acids	
29.	1.0 L of 1.0 M KBr $(C_{11}H_{22}O_{11} (aq))$ ar a. twice as many, c. twice as many, e. the same number C_{11}	(aq) Id half twic per c	solution contain solute par as many ce as many of, the same nun	s ticles nber	solute s as 1.0 L of 1 of	part .0 M b. d.	icles as 1.0 L FeCl₃ (aq) so the same nu half as many	of 1. lutioi mbei , the	0 M sucrose solution n. r of, half as many same number of	
30.	A solution of NiCl ₂ make 125.0 mL of a. 3.33 M	(<i>M</i> = solut b.	= 129.6 g/mol) is tion. The molari 0.0188 M	prep ty of c.	bared by disso NiCl₂ in this s 0.0750 M	lving olutio d.	g 4.86 g of NiC on is: 5.04 M	Cl₂ in e.	enough water to 0.300 M	
31.	The concentration 180.15 g/mol), how a. 0.073 mol	of su / ma b.	igar in a particul ny moles of carb 0.44 mol	ar jui oon a c.	ice drink is 0.4 itoms from glu 0.86 mol	1 M cose d.	If the sugar i are in 177 m 2.3 mol	is glu L of t e.	ucose (C ₆ H ₁₂ O ₆ , <i>M</i> = this drink? 28 mol	
32.	Muriatic acid is a s 5.0 M HCI solution muriatic acid in end hydrochloric acid ir a. 0.079 M	olutio The bugh n a so b.	on of hydrochlor directions for c water to make olution preparec 0.32 M	ic ac leani 3.8 L l in th c.	id sold in hard ng tile with mu (1 gallon) solu nis manner. 3.2 M	ware uriati ution d.	e stores for cle c acid say to c . Determine t 1.3 M	eanin lisso he m e.	g brick and tile. It is a lve 60 mL (¼ cup) of nolarity of 79 M	
33.	33. One mole of an ideal gas is placed in a cylinder with a moveable piston. Which of the following									
	properties of the co a. volume d. density	onfin	ed gas does not	chai b. e.	nge as the pis mass and vo volume and o	ton i lume dens	s compressed e ity	: c.	mass	
34.	Under which condita. $V = 100 \text{ mL}, \text{ T}$ d. $V = 10.0 \text{ L}, \text{ T} =$	tions = 30 : 300	will 1.0 mole of 0 K 0 K	an io b. e.	deal gas be at V = 10.0 L, T V = 100 mL,	the = 12 T = 5	lowest pressu 25 ⁰C 500 K	re? c.	V = 1.0 L, T = 25 °C	
35.	A 2.48 g sample of a. H_2	an u b.	unknown gas oc N2	cupie c.	es 1.07 L at 2. O ₂	0 atr d.	m and 373 K. F ₂	This e.	gas is: Cl ₂	
36.	Lithium metal react many grams of Li a temperature of 32.0	s wi tre n 0 ∘C.	th water to form eeded to genera	hydr ate 48	ogen gas: 2Li 3.0 L of H₂ gas	(s) + s at a	- 2H ₂ O (I) \rightarrow H a pressure of (l₂ (g)).995) + 2LiOH (aq). How 5 atm and a	
	a. 26.5 g	b.	13.2 g	C.	6.63 g	d.	126 g	e.	0.275 g	
37.	One mole of which	gas	molecules or at	oms	would have th	e gr	eatest average	e kin	etic energy (KE) at	
	a. $F_2(g)$	b.	Ar (g)	C.	CH4 (g)	d.	N ₂ (g)	e.	all have the same KE	
38.	The sub a. 5d	shel b.	l contains only c 6f	ne o c.	rbital. 4s	d.	3d	e.	1р	

39.	lf a (I) d	n electron has a of 3. the subshel	prin I des	cipal quantum n	umb	er (n) of 7 and	an	angular mome	entur	n quantum numl	oer
	a.	7f	b.	7s	c.	7p	d.	3f	e.	3d	
40.	. The electron configuration of the valence electrons of an atom in its ground state is ns ² np ¹ . This at is a group element.									atom	
	a.	1A (1)	b.	3A (13)	C.	5A (15)	d.	3B (3)	e.	1B (11)	
41.	The a.	e ground state el [Kr]5s ² 4d ¹	ectro b.	on configuration [Ne]3s ² 2d ¹	of s c.	candium is [Ar]4s²3p¹	d.	 [Ar]4s²4p¹	e.	[Ar]4s ² 3d ¹	
42.	Wh a.	ich of the followi Cl⁺, H⁻, Al³+	ng ia b. F	ons have a noble 1⁻, Al³+, Cs²+	e gas c.	s electron conf Cl ⁺ , Cs ²⁺	igur d.	ation: Cl⁺, H ⁻, H ⁻, Al³⁺, P³⁻	Al ³⁺ e.	, Cs ²⁺ , and P ³⁻ ? Cs ²⁺ , P ³⁻	
43.	A s	elenium atom ha	as	_ core electrons	s and	d valence	elec	trons.			
	a.	24, 4	b.	26, 1	c.	28, 6	d.	4, 14	e.	24, 6	
44.	44. The first ionization energy is the energy required to remove the least tightly held electron from a gaseous atom: X (g) \rightarrow X ⁺ (g) + e ⁻ . Which of the following elements would be expected to have the greatest first ionization energy?									the	
	a.	aluminum	b.	silicon	c.	sulfur	d.	chlorine	e.	argon	
45.	Wh a.	iich of the followi F	ng a b.	toms has the sm Ba	nalle c.	st atomic radiu I	us? d.	Li	e.	Ni	
46.	6. The valence electron count including adjustment for charge in the ICl_a^- ion is:										
	a.	35	b.	9	C.	40	d.	<u>36</u>	e.	32	НĤ
47.	'. The skeletal Lewis structure of N_2H_2 is shown at right. When this structure is completed:								Ň–Ņ		
	 a. there will be a nitrogen-nitrogen triple bond b. there will be a nitrogen-nitrogen double bond c. each nitrogen will have one nonbonding electron pair d. each nitrogen will have two nonbonding electron pairs e. each hydrogen will have one nonbonding electron pair 										
48. Using the VSEPR model, the electron-domain geometry of the central atom in O_3 is								₃ is			
	a. d.	linear trigonal bipyramidal			b. e.	. trigonal planar . octahedral			C.	tetrahedral	
49.	Wh a. d.	ich of the followi freezing water condensation o	s an endothermio ter vapor	c pro b. e.	ocess? burning gasoline all are endothermic process				boiling water		
50.	Ho wat	w much heat is r ter is 4.184 J/q-º	elea C.	sed when 100.0	kg d	of H ₂ O cools fr	om	75.0 °C to 25.0) °C.	The specific he	eat of
	a.	418 kJ	b.	0.478 kJ	c.	1.20 x 10 ³ kJ	d.	8.37 kJ	e.	2.09 x 10 ⁴ kJ	