Year 2 Physics Department Assessment Non-Accredited Program

Student Learning Outcomes

- 1. Demonstrate the ability to apply fundamental, overarching themes in physics, including conservation laws, symmetry, the particulate nature of matter, waves, interactions, and fields, and systems, models and their limitations.
- 2. Demonstrate competency in applying basic laws of physics in classical and quantum mechanics, electricity and magnetism, thermodynamics and statistical mechanics and special relativity, and the applications of these laws in areas such as optics, computational physics, and astronomy.
- 3. Represent basic physics concepts in multiple ways, including mathematically (including through estimations), conceptually, verbally, pictorially, computationally, by simulation, and experimentally.
- 4. Demonstrate knowledge of how basic physics concepts are applied in modern technology and apply this knowledge to the solution of applied problems.
- 5. Solve complex, ambiguous problems in real-world contexts.
- 6. Show how results obtained relate to the original problem, determine follow-up investigations, and place the results in a larger perspective.
- 7. Demonstrate instrumentation competency: competency in basic experimental technologies, including vacuum, electronics, optics, sensors, and data acquisition equipment. This includes basic experimental instrumentation abilities, such as knowing equipment limitations; understanding and using manuals and specifications; building, assembling, integrating, operating, troubleshooting, and repairing equipment; establishing interfaces between apparatus and computers; and calibrating laboratory instrumentation and equipment.
- 8. Demonstrate software competency: competency in learning and using industry-standard computational, design, analysis, and simulation software, and documenting the results obtained from a computation or design.
- 9. Demonstrate data analytics competency: competency in analyzing data, including with statistical and uncertainty analysis; distinguishing between models; and presenting those results with appropriate tables and charts.
- 10. Communicate with many different audiences from many different cultures and scientific backgrounds, understand each audience and its needs, and make the communication relevant and maximally impactful for that audience.
- 11. Obtain information and evaluate its accuracy and relevance through reading (print and online), listening, and discussing.
- 12. Articulate one's own state of understanding and be persuasive in communicating the worth of one's own ideas and those of others.
- 13. Communicate in writing about scientific and technical concepts concisely and completely, and revise writing to achieve grammatically-correct and logically-constructed arguments.
- 14. Organize and communicate ideas using words, mathematical equations, tables, graphs, pictures, animations, diagrams, and other visualization tools.
- 15. Work collegially and collaboratively in diverse, interdisciplinary teams both as a leader and as a member in pursuing a common goal.

- 16. Obtain knowledge about existing technology resources relevant for the task at hand. For example: How is the technology made? How does it work? What does it cost? Who tests it? What industries are affected by it? Where are the centers of these industries located? Where can the computational resources needed for the task be found?
- 17. Demonstrate familiarity with basic workplace concepts. Concepts such as program and project management, including planning, scheduling, tracking progress, adapting, and working within constraints, quality assessment and assurance, and working with and enhancing the safety culture in the workplace.
- 18. Display awareness of regional and national career opportunities and pathways for physics graduates.
- 19. Demonstrate critical professional and life skills, including completing work on time, optimism, realism, time management, responsibility, respect, commitment, perseverance, independence, resourcefulness, integrity, ethical behavior, and cultural and social competence

Area	SLO*	ULG**	Measures/Instruments	How the Info is Used
Physics Specific Skills	1. Demonstrate the ability to apply fundamental, overarching themes in physics, including conservation laws, symmetry, the particulate nature of matter, waves, interactions, and fields, and systems, models and their limitations.	C, Q, W	Major Field Test (given prior to leaving EIU) or possibly some other exam of general physics knowledge	Departmental review of data and updating the material taught in each course
	2. Demonstrate competency in applying basic laws of physics in classical and quantum mechanics, electricity and magnetism, thermodynamics	C, Q, W	Grades in PHY 4470, PHY 4750, PHY 4855, PHY 4865, PHY 4320, and PHY 4100	Departmental review of data and updating the material taught in each course

	and statistical			
	mechanics and			
	special relativity,			
	and the			
	applications of			
	these laws in			
	areas such as			
	optics,			
	computational			
	physics, and			
	astronomy.			
	3. Represent	C, Q,	Grades in PHY 1371,	Departmental
	basic physics	W	PHY 1372, PHY	review of data
	concepts in		3150, PHY 4711,	and updating
	multiple ways,		PHY 4712	the material
	including			taught in each
	mathematically			course
	(including			
	through			
	estimations),			
	conceptually,			
	verbally,			
	pictorially,			
	computationally,			
	by simulation,			
	and			
	experimentally.			
	4. Demonstrate	C, Q,	Grades in PHY 3150,	Departmental
	knowledge of	W, Q,	PHY 4713	review of data
	how basic	**	1111 4/13	and updating
	physics concepts			the material
	are applied in			taught in each
	modern			course
	technology and			
	apply this			
	knowledge to the			
	solution of			
G : 4'C' T 1 : 1	applied problems.	C C D	C 1 ' DITY 4712	D (1
Scientific Technical	5. Solve	C, S, R	Grades in PHY 4713,	Departmental
Skills	complex,		PHY 2601, PHY	review of data
	ambiguous		4601	to inform
	problems in real-			directions of
	world contexts.			future lab
				experiences
				and research
				projects

6. Show how results obtained relate to the original problem, determine follow-up investigations, and place the results in a larger perspective. 7. Demonstrate instrumentation competency: competency in basic experimental technologies, including vacuum, electronics, optics, sensors, and data acquisition cquipment. This includes basic experimental instrumentation abilities, such as knowing equipment limitations; understanding and using manuals and specifications; building, assembling, integrating, operating, troubleshooting, and repairing equipment; establishing interfaces between apparatus and		1		
instrumentation competency: competency: competency in basic experimental technologies, including vacuum, electronics, optics, sensors, and data acquisition equipment. This includes basic experimental instrumentation abilities, such as knowing equipment limitations; understanding and using manuals and specifications; building, assembling, integrating, operating, troubleshooting, and repairing equipment; establishing interfaces between	results obtained relate to the original problem, determine follow-up investigations, and place the results in a larger	C, Q	PHY 2601, PHY	review of data to inform directions of future lab experiences and research
	7. Demonstrate instrumentation competency: competency in basic experimental technologies, including vacuum, electronics, optics, sensors, and data acquisition equipment. This includes basic experimental instrumentation abilities, such as knowing equipment limitations; understanding and using manuals and specifications; building, assembling, integrating, operating, troubleshooting, and repairing equipment; establishing interfaces	NA	PHY 4470, PHY 4711, PHY 4712,	review of data and updating the material taught in each

	1		
computers; and calibrating laboratory instrumentation and equipment.			
8. Demonstrate software competency: competency in learning and using industry-standard computational, design, analysis, and simulation software, and documenting the results obtained from a computation or design.	C, Q, W	Grades in PHY 3270, PHY 4320	Departmental review of data to inform directions of software updates and purchases
9. Demonstrate data analytics competency: competency in analyzing data, including with statistical and uncertainty analysis; distinguishing between models; and presenting those results with appropriate tables and charts.	C, Q, W	Grades in PHY 1372, PHY 3150, PHY 4711, PHY 4712	Departmental review of data and updating the material taught in each course

Communications Skills	10. Communicate with many different audiences from many different cultures and scientific backgrounds, understand each audience and its needs, and make the communication relevant and maximally impactful for that audience.	W, S, R	EWP Report	Departmental review of data and updating the material taught
	11. Obtain information and evaluate its accuracy and relevance through reading (print and online), listening, and discussing.	W, S	Professor's Evaluation of PHY 1001	Professor and Departmental review of evaluation and improving the course
	12. Articulate one's own state of understanding and be persuasive in communicating the worth of one's own ideas and those of others.	S	Speaking Report	Departmental review of data and weighing the balance of speaking, discussion, and research
	13. Communicate in writing about scientific and technical concepts concisely and completely, and revise writing to achieve grammatically-	C, W	Grades in PHY 3410, PHY 3420, PHY 4855, PHY 4865	Departmental review of data and determination of appropriate direction for further learning

	ı	1		1
	correct and			
	logically-			
	constructed			
	arguments.			
	14. Organize and	W, Q	Grades in PHY 4000	Departmental
	communicate			review of data
	ideas using			and updating
	words,			the material
	mathematical			taught
	equations, tables,			
	graphs, pictures,			
	animations,			
	diagrams, and			
	other			
	visualization			
	tools.			
Professional/Workplace	15. Work	R	Exit Interview	Departmental
Skills	collegially and			discussions of
	collaboratively in			lab partner
	diverse,			work and
	interdisciplinary			practices
	teams both as a			
	leader and as a			
	member in			
	pursuing a			
	common goal.			
	16. Obtain	S, W	Grades in PHY 3150,	Departmental
	knowledge about		PHY 4713	review of data
	existing			and updating
	technology			the processes
	resources			for each
	relevant for the			course
	task at hand. For			
	example: How is			
	the technology			
	made? How does			
	it work? What			
	does it cost? Who			
	tests it? What			
	industries are			
	affected by it?			
	Where are the			
	centers of these			
	industries			
	located? Where			
	can the			

computational resources needed for the task be found?			
17. Demonstrate familiarity with basic workplace concepts. Concepts such as program and project management, including planning, scheduling, tracking progress, adapting, and working within constraints, quality assessment and assurance, and working with and enhancing the safety culture in the workplace.	R	Alumni Survey	Departmental discussion of overall approach to student's global integration and how the Department can relate
18. Display awareness of regional and national career opportunities and pathways for physics graduates.	NA	Exit Interview, Alumni Survey	Departmental review of data and updating the material taught
19. Demonstrate critical professional and life skills, including completing work on time, optimism,	R	Exit Interview, Alumni Survey	Departmental discussions of expectations and standards

	realism, time		
	management,		
	responsibility,		
	respect,		
	commitment,		
	perseverance,		
	independence,		
	resourcefulness,		
	integrity, ethical		
	behavior, and		
	cultural and		
	social		
	competence		
* Student Learning			
Objectives			
** University Learning	C = Critical		
Goals -	Thinking		
	W = Writing and		
	Critical Reading		
	S = Speaking and		
	Listening		
	Q = Quantitative		
	Reasoning		
	R = Responsible		
	Citizenship		
	NA = Not	 	
	Applicable		

Assessment Vehicles

The following are two assessment surveys. The first is an exit survey that will be used to poll students in their senior year to learn their impressions. The second is an Alumni survey to see how the EIU education has helped them in their career.

EIU Physics-Engineering Exit Interview

Year entered program			Year	graduating/transfer	ring	_
Program Option Name(Optional)				_		
(Physics, Astronomy, Co (3-2), Engineering Physi			censure in P	Physics, Electrical Eng	gineering, B.S. in	Engineering
Upon graduation/transi Taking a job related		cify)				
Taking a job unrelat	ed to my major (s	pecify)				
Continuing my studistudy)Other:						
Please provide answers 1=strongly disagree		ng numerical so 3=neutral		5=strongly agree	NA=not applica	able
I can recommend EII	J to another stude	ent.			1.	
2. In general, the qualit	ty of instruction a	t EIU is high.			2.	
3. In concept, the EIU g	general education	curriculum is a	good idea.		3.	
4. EIU as a whole provi	des a stimulating	atmosphere fo	r undergrac	duate study.	4.	
5. I can recommend my	y physics degree p	rogram to ano	ther studer	nt.	5.	
6. In general, I am plea	sed with the curri	culum in my pł	nysics degre	ee program.	6.	
7. The quality of instruc	ction in the physic	s department	is high.		7.	
8. Class sizes in the phy	sics classes are ap	propriate.			8.	
9. Undergraduate resea	arch opportunitie	s were availabl	e to me.		9.	
10. I had a rewarding ur	ndergraduate rese	earch experien	ce.		10.	
11. Faculty members in	the physics depai	tment provide	a stimulati	ng atmosphere.	11.	

12. Faculty members in the physics department are constructively involved in education.	12.	
13. Faculty members in the physics department are accessible and helpful.	13.	
14. My academic advisor in the physics department was accessible and helpful.	14.	
15. Fellow students were intellectually stimulating.	15.	
16. The physics department staff was accessible and helpful.	16.	
17. The physics lab facilities and equipment were appropriate for undergraduate instruction.	17.	
18. The program should require coursework in advanced computer skills.	18.	
19. Research should be required of all students in my major.	19.	
The physics program at EIU has:		
20. prepared me for the next step in my professional career.	20.	
21. given me an appropriate background in mechanics.	21.	
22. given me an appropriate background in electricity and magnetism.	22.	
23. given me an appropriate background in thermodynamics.	23.	
24. given me an appropriate background in quantum mechanics.	24.	
25. developed in me the ability to use mathematics in the solution of real physics problems.	25.	
26. given me the ability to calculate the experimental error in real physical situations.	26.	
27. given me the ability to communicate effectively, both verbally and in writing.	27.	
28. given me the ability to use basic experimental apparatus for studying physical phenomena.	28.	
Should PHY 1351, 1361, 1371 have a 1-hour of discussion section each week (to discuss homework, etc.) to go along with the 3 hours of lecture and 3 hours of lab? Yes	No	

Did you work in an REU, an internship, or a Physics or Engineering activity? If so, please specify.

Were there any specific strengths or weaknesses in textbooks, equipment, etc in the:
(a) introductory physics sequence
Were there any specific strengths or weaknesses in textbooks, equipment, etc in the: (b) math sequence of courses
(c) chemistry classes
(d) advanced physics labs
(e) physics electives or other physics classes or research
If you wish, describe an area or areas in which the instructional program was good.

If you wish, describe an area or areas in which the instructional program was lacking. How can it be improved?
Are there any general thoughts on the department that you would like to share?
Please return this form to the Physics Department's office (or your instructor):
Dr. Steven Daniels / 2133 Physical Science / Eastern Illinois University / Charleston, IL 61920
The assessment program may include a final interview five years after graduation/transfer. Please separately email your name, address, and preferred email address to djcombs@eiu.edu.

EIU Physics and Engineering Graduate Survey

Please return this survey by May 15th, 2021.

Please take some time to complete this survey as part of our continuing efforts to assess the quality of the Physics Department's instructional programs. This survey will help the department to prepare for it's upcoming IBHE review.

Your Name:		
Your Address:		
Your Email:		
Year graduated from EIU:		Program completed:
		(Physics, Astronomy, Computational Physics, Teacher Licensure, Electrical Engineering, Engineering Physics, BS in Engineering, Pre- Engineering)
Highest degree obtained:_		Location of degree:
Description of your curren	t position:	
		-

Current position title: for example Graduate Student in Physics or Quality Control Engineer					
	_				
Name and address of company / school at which you currently work:					
					
					
Please provide responses to the statements listed below using the following numerical schedusagree, 2=disagree, 3=neutral., 4=agree, 5=strongly agree	me: 1	=str	ongl	e →	
If you would like, please feel free to insert comments in the space between statements. ← D	isagre	e i	Agre	e -)	>
1. I have a positive attitude toward my major.	1	2	3	4	5
2. I would recommend the EIU Physics degree program to other students.	1	2	3	4	5
3. I was pleased with the curriculum in the EIU Physics degree program.	1	2	3	4	5

4. The physics program prepared me very well for my current job or position.	1	2	3	4	5
5. The quality of instruction in the physics department was high.	1	2	3	4	5
6. Class sizes in the Physics courses were appropriate. Please indicate what you would consider to be the ideal number of students in an interphysics class				4	5
7. Faculty members in the physics department provided a stimulating atmosphere.	1	2	3	4	5
8. Faculty members in the physics department were constructively involved in education.	1	2	3	4	5
9. Faculty members in the physics department were accessible and helpful.	1	2	3	4	5
10. My academic advisor in the physics department was accessible and helpful.	1	2	3	4	5
11. Problem solving skills learned at EIU have helped me in my current position.	1	2	3	4	5
12. The physics lab facilities & equipment were appropriate for undergraduate instruction.	1	2	3	4	5

If you wish, describe what you liked about the program.			
If you wish, describe ways in which the program could be improved.			
Are there any general thoughts on the department that you would like to share?			
Thank you for your time in filling out this survey. We appreciate your willingness to help us in assessing the quality of the Physics Department's programs at Eastern Illinois University.			
Sincerely,			
Steve Daniels, Physics Department Chair			

Improvements and Changes Based on Assessment

1. Provide a short summary (1-2 paragraphs or bullets) of any curricular actions (revisions, additions, and so on) that were approved over the past two years as a result of reflecting on the student learning outcomes data. Are there any additional future changes, revisions, or interventions proposed or still pending?

The Physics Department went through a complete overhaul of the curriculum that was completed in 2018 and the first classes of the new program were in FA2019. The first class of graduates under this program will graduate in SA2021 so we do not have any assessment data on those students.

2. Please provide a brief description or bulleted list of any improvements (or declines) observed/measured in student learning. Be sure to mention any intervention made that has not yet resulted in student improvement (if applicable).

Due to the short implementation time for the program there are no improvements or declines.

History of Annual Review				
	Individuals/Groups who reviewed the	Results of the		
Date of Annual Review	Plan	Review		
2017 and prior				
		Varied from Fully		
Links to all MAPs are broken from		Mature to		
the VPAA MAP website	Karla Sanders	Satisfactory		
https://www.eiu.edu/acaffair/MAP/				

CLAS Deans' comments on PHY B.S. report

Reviewer: Michael Cornebise

Please note: This is a STARTING POINT for conversation, with no rubric per se. We will be developing a rubric collaboratively (amongst chairs, Associate Deans, and our new EIU Assessment Coordinator, Yvette Smith) in the spring of 2021 based on peer/aspirant institution models, then we'll evaluate it by that. Meanwhile, if you'd like to modify your document based on these comments, feel free. We appreciate your patience with this process as it evolves!

- 1. SLOs are extensive and are generally clear and measurable. They use a good mix of high-level, mid-level, and low-level Bloom's Taxonomy verbs.
- 2. The assessment plan includes a nice mix of measurements to gather data at different levels. These include a major field test, an exit interview, an alumni survey, EWP data and a speaking report along with grades obtained in major classes. The attached Exit Interview sheet Graduate Survey instruments are extensive and should yield interesting and useful quantitative and qualitative data.
- 3. My only criticism is that the plan seems to rely heavily on grades obtained in specified courses to assess many of the SLOs. How will the department determine the extent to which learning outcomes are met (or not, as the case may be)? To drill down a bit deeper, the department might consider the use of targeted exam questions that every student will answer or pre- and post-tests to evaluate
- 4. While the last column addresses how the info will be used, can you include more information as to how the data will be evaluated and shared with the department in order to improve learning outcomes?

Overall, though, the plan seems comprehensive and ready for data collection.